20.統(tǒng)計(jì)表明.某種型號(hào)的汽車在勻速行駛中每小時(shí)的耗油量(升)關(guān)于行駛速度的函數(shù)解析式可以表示為: 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)

統(tǒng)計(jì)表明,某種型號(hào)的汽車在勻速行駛中每小時(shí)耗油量y(升)關(guān)于行駛速度x(千米/小時(shí))的函數(shù)解析式可以表示為:.已知甲、乙兩地相距100千米。

(1)當(dāng)汽車以40千米/小時(shí)的速度勻速行駛時(shí),從甲地到乙地要耗油多少升?

(2)當(dāng)汽車以多大的速度勻速行駛時(shí),從甲地到乙地耗油最少?最少為多少升?

 

查看答案和解析>>

(本小題滿分12分)

統(tǒng)計(jì)表明,某種型號(hào)的汽車在勻速行駛中每小時(shí)的耗油量(升)關(guān)于行駛速度(千米/小時(shí))的函數(shù)解析式可以表示為

已知甲、乙兩地相距100千米.

    (Ⅰ)當(dāng)汽車以40千米/小時(shí)的速度勻速行駛時(shí),從甲地到乙地要耗油多少升?

    (Ⅱ)當(dāng)汽車以多大的速度勻速行駛時(shí),從甲地到乙地耗油最少?最少為多少升?

 

查看答案和解析>>

(本小題滿分12分)統(tǒng)計(jì)表明,某種型號(hào)的汽車在勻速行駛中每小時(shí)耗油量y(升)關(guān)于行駛速度x(千米/小時(shí))的函數(shù)解析式可以表示為:.已知甲、乙兩地相距100千米.

(Ⅰ)當(dāng)汽車以40千米/小時(shí)的速度勻速行駛時(shí),從甲地到乙地要耗油多少升?

(Ⅱ)當(dāng)汽車以多大的速度勻速行駛時(shí),從甲地到乙地耗油最少?最少為多少升?

 

 

 

 

 

查看答案和解析>>

(本小題滿分12分)
統(tǒng)計(jì)表明,某種型號(hào)的汽車在勻速行駛中每小時(shí)耗油量y(升)關(guān)于行駛速度x(千米/小時(shí))的函數(shù)解析式可以表示為:.已知甲、乙兩地相距100千米。
(1)當(dāng)汽車以40千米/小時(shí)的速度勻速行駛時(shí),從甲地到乙地要耗油多少升?
(2)當(dāng)汽車以多大的速度勻速行駛時(shí),從甲地到乙地耗油最少?最少為多少升?

查看答案和解析>>

(本小題滿分12分)為了考察某種藥物預(yù)防禽流感的效果,進(jìn)行動(dòng)物家禽試驗(yàn),調(diào)查了100個(gè)樣本,統(tǒng)計(jì)結(jié)果為:服用藥的共有60個(gè)樣本,服用藥但患病的仍有20個(gè)樣本,沒(méi)有服用藥且未患病的有20個(gè)樣本。(1)根據(jù)以上數(shù)據(jù)建立一個(gè)列聯(lián)表;(2)判斷這種新藥對(duì)預(yù)防禽流感是否有效,并說(shuō)明理由.(參考公式:,臨界值: ;2.706)

查看答案和解析>>

1-15    D AC AC    A ABAA   BC

13.     14.40     15. 

16.

17.證明:(Ⅰ)

           

       函數(shù)上為增函數(shù);

(Ⅱ)反證法:假設(shè)存在,滿足     

          

這與矛盾,假設(shè)錯(cuò)誤      

故方程沒(méi)有負(fù)數(shù)根 

 18.解:依題意有:= a,

 =2ax+ (x<2)

方程為=0

與圓相切     =

a=

19.解:(Ⅰ),                         ……………………………2分

         ∴,                      ……………………………3分

         又,                   ……………………………4分

∴曲線處的切線方程為,     …………5分

.                                   …………………6分

  (Ⅱ)由消去,解得,……7分

所求面積,  …………9分

        設(shè),則,  …………10分

        ∴

              .                              ……………………12分

 

21.(1)當(dāng)時(shí),當(dāng)時(shí),.   

       由條件可知,,即解得

       ∵                              ………….5分

              (2)當(dāng)時(shí),     

              即

                     

故m的取值范圍是                      …………….12分

22. 解:(I)因?yàn)?sub>6ec8aac122bd4f6e,所以6ec8aac122bd4f6e               ----1分

6ec8aac122bd4f6e,6ec8aac122bd4f6e        

解得6ec8aac122bd4f6e,                    ------------------------3分

此時(shí)6ec8aac122bd4f6e

當(dāng)6ec8aac122bd4f6e時(shí)6ec8aac122bd4f6e,當(dāng)6ec8aac122bd4f6e時(shí)6ec8aac122bd4f6e,           ----------5分

所以6ec8aac122bd4f6e時(shí)6ec8aac122bd4f6e取極小值,所以6ec8aac122bd4f6e符合題目條件;                  ----------6分

(II)由6ec8aac122bd4f6e6ec8aac122bd4f6e,

當(dāng)6ec8aac122bd4f6e時(shí),6ec8aac122bd4f6e,此時(shí)6ec8aac122bd4f6e6ec8aac122bd4f6e,

6ec8aac122bd4f6e,所以6ec8aac122bd4f6e是直線6ec8aac122bd4f6e與曲線6ec8aac122bd4f6e的一個(gè)切點(diǎn);        -----8分

當(dāng)6ec8aac122bd4f6e時(shí),6ec8aac122bd4f6e,此時(shí)6ec8aac122bd4f6e,6ec8aac122bd4f6e

6ec8aac122bd4f6e,所以6ec8aac122bd4f6e是直線6ec8aac122bd4f6e與曲線6ec8aac122bd4f6e的一個(gè)切點(diǎn);                     -----------10分

所以直線l與曲線S相切且至少有兩個(gè)切點(diǎn);

對(duì)任意xR6ec8aac122bd4f6e,

所以6ec8aac122bd4f6e                     

因此直線6ec8aac122bd4f6e是曲線6ec8aac122bd4f6e的“上夾線”. ---------------------14分

22.【解】(Ⅰ)

的增區(qū)間為減區(qū)間為.

極大值為,極小值為.…………4′

(Ⅱ)原不等式可化為由(Ⅰ)知,時(shí),的最大值為.

的最大值為,由恒成立的意義知道,從而…8′

(Ⅲ)設(shè)

.

∴當(dāng)時(shí),,故上是減函數(shù),

又當(dāng)、是正實(shí)數(shù)時(shí),

.

的單調(diào)性有:

.…………12′

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


同步練習(xí)冊(cè)答案