比一3大且比2小的整數(shù)的和是 . 查看更多

 

題目列表(包括答案和解析)

閱讀下列材料并填空:
你能比較兩個數(shù)20062007和20072006的大小嗎?為了解決這個問題,先把問題一般化,即比較nn+1和(n+1)n的大。╪≥1且n為整數(shù)),然后,從分析n=1,n=2,n=3,…,這些簡單情形人手,從中發(fā)現(xiàn)規(guī)律,經(jīng)過歸納,猜想出結論。
(1)通過計算,比較下列各組兩個數(shù)的大。唬ㄌ睢>”、“<”或“=”)
①12(    )21;②23(    )32;③34(    )43。
(2)根據(jù)(1)的結果歸納,可以猜想nn+1與(n+1)n的大小關系是_______;
(3)利用(2)的結論,可以得到20062007_______20072006(填“>”、“<”或“=”)。

查看答案和解析>>

問題探索:
(1)已知一個正分數(shù)(m>n>0),如果分子、分母同時增加1,分數(shù)的值是增大還是減?請證明你的結論;
(2)若正分數(shù)(m>n>0)中分子和分母同時增加2,3…k(整數(shù)k>0),情況如何?
(3)請你用上面的結論解釋下面的問題:
建筑學規(guī)定:民用住宅窗戶面積必須小于地板面積,但按采光標準,窗戶面積與地板面積的比應不小于10%,并且這個比值越大,住宅的采光條件越好,問同時增加相等的窗戶面積和地板面積,住宅的采光條件是變好還是變壞?請說明理由。

查看答案和解析>>

某公司組織部分員工到一博覽會的A、B、C、D、E五個展館參觀,公司所購門票種類、數(shù)量繪制成的條形和扇形統(tǒng)計圖如圖所示。
請根據(jù)統(tǒng)計圖回答下列問題:
(1)將條形統(tǒng)計圖和扇形統(tǒng)計圖在圖中補充完整;
(2)若A館門票僅剩下一張,而員工小明和小華都想要,他們決定采用抽撲克牌的方法來確定,規(guī)則是:“將同一副牌中正面分別標有數(shù)字1,2,3,4的四張牌洗勻后,背面朝上放置在桌面上,每人隨機抽一次且一次只抽一張;一人抽后記下數(shù)字,將牌放回洗勻背面朝上放置在桌面上,再由另一人抽,若小明抽得的數(shù)字比小華抽得的數(shù)字大,門票給小明,否則給小華。” 請用畫樹狀圖或列表的方法計算出小明和小華獲得門票的概率,并說明這個規(guī)則對雙方是否公平。

查看答案和解析>>

在前面的學習中,我們通過對同一面積的不同表達和比較,根據(jù)圖①和圖②發(fā)現(xiàn)并驗證了平方差公式和完全平方公式

這種利用面積關系解決問題的方法,使抽象的數(shù)量關系因集合直觀而形象化。

【研究速算】

提出問題:47×43,56×54,79×71,……是一些十位數(shù)字相同,且個位數(shù)字之和是10的兩個兩位數(shù)相乘的算式,是否可以找到一種速算方法?

幾何建模:

用矩形的面積表示兩個正數(shù)的乘積,以47×43為例:

(1)畫長為47,寬為43的矩形,如圖③,將這個47×43的矩形從右邊切下長40,寬3的一條,拼接到原矩形的上面。

(2)分析:原矩形面積可以有兩種不同的表達方式,47×43的矩形面積或(40+7+3)×40的矩形與右上角3×7的矩形面積之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021,用文字表述47×43的速算方法是:十位數(shù)字4加1的和與4相乘,再乘以100,加上個位數(shù)字3與7的積,構成運算結果。

歸納提煉:

兩個十位數(shù)字相同,并且個位數(shù)字之和是10的兩位數(shù)相乘的速算方法是(用文字表述)        .

【研究方程】

提出問題:怎么圖解一元二次方程

幾何建模:

(1)變形:

(2)畫四個長為,寬為的矩形,構造圖④

(3)分析:圖中的大正方形面積可以有兩種不同的表達方式,或四個長,寬的矩形之和,加上中間邊長為2的小正方形面積

即:

歸納提煉:求關于的一元二次方程的解

要求參照上述研究方法,畫出示意圖,并寫出幾何建模步驟(用鋼筆或圓珠筆畫圖,并標注相關線段的長)

【研究不等關系】

提出問題:怎么運用矩形面積表示的大小關系(其中)?

幾何建模:

(1)畫長,寬的矩形,按圖⑤方式分割

(2)變形:

(3)分析:圖⑤中大矩形的面積可以表示為;陰影部分面積可以表示為,

畫點部分的面積可表示為,由圖形的部分與整體的關系可知:,即

歸納提煉:

,時,表示的大小關系

根據(jù)題意,設,,要求參照上述研究方法,畫出示意圖,并寫出幾何建模步驟(用鋼筆或圓珠筆畫圖,并標注相關線段的長)

 

查看答案和解析>>

在前面的學習中,我們通過對同一面積的不同表達和比較,根據(jù)圖①和圖②發(fā)現(xiàn)并驗證了平方差公式和完全平方公式
這種利用面積關系解決問題的方法,使抽象的數(shù)量關系因集合直觀而形象化。

【研究速算】
提出問題:47×43,56×54,79×71,……是一些十位數(shù)字相同,且個位數(shù)字之和是10的兩個兩位數(shù)相乘的算式,是否可以找到一種速算方法?
幾何建模:
用矩形的面積表示兩個正數(shù)的乘積,以47×43為例:
(1)畫長為47,寬為43的矩形,如圖③,將這個47×43的矩形從右邊切下長40,寬3的一條,拼接到原矩形的上面。
(2)分析:原矩形面積可以有兩種不同的表達方式,47×43的矩形面積或(40+7+3)×40的矩形與右上角3×7的矩形面積之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021,用文字表述47×43的速算方法是:十位數(shù)字4加1的和與4相乘,再乘以100,加上個位數(shù)字3與7的積,構成運算結果。

歸納提煉:
兩個十位數(shù)字相同,并且個位數(shù)字之和是10的兩位數(shù)相乘的速算方法是(用文字表述)       .
【研究方程】
提出問題:怎么圖解一元二次方程
幾何建模:
(1)變形:
(2)畫四個長為,寬為的矩形,構造圖④

(3)分析:圖中的大正方形面積可以有兩種不同的表達方式,或四個長,寬的矩形之和,加上中間邊長為2的小正方形面積
即:





歸納提煉:求關于的一元二次方程的解
要求參照上述研究方法,畫出示意圖,并寫出幾何建模步驟(用鋼筆或圓珠筆畫圖,并標注相關線段的長)
【研究不等關系】
提出問題:怎么運用矩形面積表示的大小關系(其中)?
幾何建模:
(1)畫長,寬的矩形,按圖⑤方式分割

(2)變形:
(3)分析:圖⑤中大矩形的面積可以表示為;陰影部分面積可以表示為,
畫點部分的面積可表示為,由圖形的部分與整體的關系可知:,即

歸納提煉:
,時,表示的大小關系
根據(jù)題意,設,,要求參照上述研究方法,畫出示意圖,并寫出幾何建模步驟(用鋼筆或圓珠筆畫圖,并標注相關線段的長)

查看答案和解析>>


同步練習冊答案