14.經(jīng)過(guò)平面上的任意三個(gè)點(diǎn)中的兩點(diǎn)共可以畫 條直線. 查看更多

 

題目列表(包括答案和解析)

已知:在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(0,2),以O(shè)A為直徑作圓B.若點(diǎn)D是x軸上的一動(dòng)點(diǎn),連接AD交圓B于點(diǎn)C.
(1)當(dāng)tan∠DAO=
12
時(shí),求直線BC的解析式;
(2)過(guò)點(diǎn)D作DP∥y軸與過(guò)B、C兩點(diǎn)的直線交于點(diǎn)P,請(qǐng)任意求出三個(gè)符合條件的點(diǎn)P的坐標(biāo),并確定圖象經(jīng)過(guò)這三個(gè)點(diǎn)的二次函數(shù)的解析式;
(3)若點(diǎn)P滿足(2)中的條件,點(diǎn)M的坐標(biāo)為(-3,3),求線段PM與PB的和的最小值,并求出此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

下列五個(gè)命題: (1)兩個(gè)端點(diǎn)能夠重合的弧是等;(2)圓的任意一條弦必定把圓分成劣弧和優(yōu)弧兩部分;(3)經(jīng)過(guò)平面上任意三點(diǎn)可以作一個(gè)圓;(4)任意一個(gè)圓有且只有一個(gè)內(nèi)接三角形;(5)三角形的外心到各頂點(diǎn)的距離相等. 其中真命題有(    )     

 A.1個(gè)         B.2個(gè)         C.3個(gè)           D.4個(gè)

查看答案和解析>>

下列說(shuō)法正確的是


  1. A.
    兩個(gè)互補(bǔ)的角中必有一個(gè)角是鈍角
  2. B.
    相等的角是對(duì)頂角
  3. C.
    平面上A,B兩點(diǎn)間的距離就是線段AB
  4. D.
    平面上有A,B,C三點(diǎn),經(jīng)過(guò)任意兩點(diǎn)作直線可以作3條直線或1條直線

查看答案和解析>>

37、如圖①所示,已知直線m∥n,A,B為直線n上的兩點(diǎn),C,D為直線m上的兩點(diǎn).
(1)寫出圖中面積相等的各對(duì)三角形
△ABC和△ABD,△AOC和△BOD,△CDA和△CDB
;
(2)如果A,B,C為三個(gè)定點(diǎn),點(diǎn)D在m上移動(dòng),那么無(wú)論D點(diǎn)移動(dòng)到任何位置,總有
△ABD
與△ABC的面積相等,理由是
平行線間的距離處處相等

解決以下問(wèn)題:如圖②所示,五邊形ABCDE是張大爺十年前承包的一塊土地的示意圖,經(jīng)過(guò)多年開墾荒地,現(xiàn)已變成如圖③所示的形狀,但承包土地與開墾荒地的分界小路(即圖中的折線CDE)還保留著.張大爺想過(guò)E點(diǎn)修一條直路,使直路左邊的土地面積與承包時(shí)的一樣多,右邊的土地面積與開墾荒地面積一樣多.請(qǐng)你用相關(guān)的幾何知識(shí),按張大爺?shù)囊笤O(shè)計(jì)出修路方案.(不計(jì)分界小路與直路的占地面積)
(3)寫出設(shè)計(jì)方案,并在圖③中畫出相應(yīng)的圖形;
(4)說(shuō)明方案設(shè)計(jì)的理由.

查看答案和解析>>

我們知道三角形的一條中線能將這個(gè)三角形分成面積相等的兩個(gè)三角形,反之,若經(jīng)過(guò)三角形的一個(gè)頂點(diǎn)引一條直線將這個(gè)三角形分成面積相等兩個(gè)三角形,那么這條直線平分三角形的這個(gè)頂點(diǎn)的對(duì)邊.如圖1,若S△ABD=S△ADC,則BD=CD成立.
請(qǐng)你直接應(yīng)用上述結(jié)論解決以下問(wèn)題:

(1)已知:如圖2,AD是△ABC的中線,沿AD翻折△ADC,使點(diǎn)C落在點(diǎn)E,DE交AB于F,若△ADE與△ADB重疊部分面積等于△ABC面積的
1
4
,問(wèn)線段AE與線段BD有什么關(guān)系?在圖中按要求畫出圖形,并說(shuō)明理由.
(2)已知:如圖3,在△ABC中,∠ACB=90°,AC=2,AB=4,點(diǎn)D是AB邊的中點(diǎn),點(diǎn)P是BC邊上的任意一點(diǎn),連接PD,沿PD翻折△ADP,使點(diǎn)A落在E,若△PDE與△PDB重疊部分的面積等于△ABP面積的
1
4
,直接寫出BP2的值.

查看答案和解析>>


同步練習(xí)冊(cè)答案