(2)請利用以上知識(shí)解方程x4-x2-6=0. 查看更多

 

題目列表(包括答案和解析)

閱讀材料:為解方程(x2-1)2-5(x2-1)+4=0,我們可以將x2-1看作一個(gè)整體,然后設(shè)x2-1=y(tǒng)……①,那么原方程可化為y2-5y+4=0,解得y1=1,y2=4.當(dāng)y=1時(shí),x2-1=1,∴x2=2,∴x=±;當(dāng)y=4時(shí),x2-1=4,∴x2=5,∴x=±,故原方程的解為x1,x2,x3,x4

解答問題:(1)上述解題過程,在由原方程得到方程①的過程中,利用_________法達(dá)到了解方程的目的,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想;

(2)請利用以上知識(shí)解方程x4-x2-6=0.

查看答案和解析>>

閱讀材料:為解方程(x2-1)2-5(x2-1)+4=0,我們可以將x2-1看作一個(gè)整體,然后設(shè)

x2-1=y(tǒng)……①,那么原方程可化為y2-5y+4=0,解得y1=1,y2=4.當(dāng)y=1時(shí),x2-1=1,

∴x2=2,∴x=±;當(dāng)y=4時(shí),x2-1=4,∴x2=5,∴x=±,故原方程的解為x1,

x2,x3,x4.解答問題:(1)上述解題過程,在由原方程得到方程①的過程中,利用_________法達(dá)到了解方程的目的,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想;(2)請利用以上知識(shí)解方程X4-X2-6=0.

查看答案和解析>>

閱讀材料:為解方程(x2-1)2-5(x2-1)+4=0,我們可以將x2-1看作一個(gè)整體,然后設(shè)x2-1=y(tǒng)……①,那么原方程可化為y2-5y+4=0,解得y1=1,y2=4.當(dāng)y=1時(shí),x2-1=1,∴x2=2,∴x=±;當(dāng)y=4時(shí),x2-1=4,∴x2=5,∴x=±,故原方程的解為x1,x2,x3,x4

解答問題:(1)上述解題過程,在由原方程得到方程①的過程中,利用________法達(dá)到了解方程的目的,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想;

(2)請利用以上知識(shí)解方程x4-x2-6=0.

查看答案和解析>>


同步練習(xí)冊答案