25.如圖.若在象棋盤上建立了平面直角坐標(biāo)系.使“將 位于點.“象 位于點.那么“炮 .“車 .“馬 .“卒 .“士 各點坐標(biāo)分別是什么? 查看更多

 

題目列表(包括答案和解析)

20、一天,上九年級的聰聰和明明在一起下棋,這時聰聰靈機一動,象棋中也有很多數(shù)學(xué)知識,如圖,我們給中國象棋棋盤建立一個平面直角坐標(biāo)系(每個小正方形的邊長均為1),根據(jù)象棋中“馬”走“日”的規(guī)定,若“馬”的位置在圖中的點P.
(1)寫出下一步“馬”可能到達(dá)的點的坐標(biāo)
(0,0),(0,2),(1,3),(3,3),(4,2),(4,0)

(2)明明想了想,我還有兩個問題呢:
①如果順次連接(1)中的所有點,你知道得到的圖形是
軸對稱
圖形(填“中心對稱”、“旋轉(zhuǎn)對稱”、“軸對稱”);
②指出(1)中關(guān)于點P成中心對稱的點
(0,0)點和(4,2)點;(0,2)點和(4,0)點

查看答案和解析>>

一天,上九年級的聰聰和明明在一起下棋,這時聰聰靈機一動,象棋中也有很多數(shù)學(xué)知識,如圖,我們給中國象棋棋盤建立一個平面直角坐標(biāo)系(每個小正方形的邊長均為1),根據(jù)象棋中“馬”走“日”的規(guī)定,若“馬”的位置在圖中的點P.
(1)寫出下一步“馬”可能到達(dá)的點的坐標(biāo)______;
(2)明明想了想,我還有兩個問題呢:
①如果順次連接(1)中的所有點,你知道得到的圖形是______圖形(填“中心對稱”、“旋轉(zhuǎn)對稱”、“軸對稱”);
②指出(1)中關(guān)于點P成中心對稱的點______.

查看答案和解析>>

一天,上九年級的聰聰和明明在一起下棋,這時聰聰靈機一動,象棋中也有很多數(shù)學(xué)知識,如圖,我們給中國象棋棋盤建立一個平面直角坐標(biāo)系(每個小正方形的邊長均為1),根據(jù)象棋中“馬”走“日”的規(guī)定,若“馬”的位置在圖中的點P.
(1)寫出下一步“馬”可能到達(dá)的點的坐標(biāo)______;
(2)明明想了想,我還有兩個問題呢:
①如果順次連接(1)中的所有點,你知道得到的圖形是______圖形(填“中心對稱”、“旋轉(zhuǎn)對稱”、“軸對稱”);
②指出(1)中關(guān)于點P成中心對稱的點______.

查看答案和解析>>

一天,上九年級的聰聰和明明在一起下棋,這時聰聰靈機一動,象棋中也有很多數(shù)學(xué)知識,如圖,我們給中國象棋棋盤建立一個平面直角坐標(biāo)系(每個小正方形的邊長均為1),根據(jù)象棋中“馬”走“日”的規(guī)定,若“馬”的位置在圖中的點P.
(1)寫出下一步“馬”可能到達(dá)的點的坐標(biāo)______;
(2)明明想了想,我還有兩個問題呢:
①如果順次連接(1)中的所有點,你知道得到的圖形是______圖形(填“中心對稱”、“旋轉(zhuǎn)對稱”、“軸對稱”);
②指出(1)中關(guān)于點P成中心對稱的點______.

查看答案和解析>>

一天,上九年級的聰聰和明明在一起下棋,這時聰聰靈機一動,象棋中也有很多數(shù)學(xué)知識,如圖,我們給中國象棋棋盤建立一個平面直角坐標(biāo)系(每個小正方形的邊長均為1),根據(jù)象棋中“馬”走“日”的規(guī)定,若“馬”的位置在圖中的點P.
(1)寫出下一步“馬”可能到達(dá)的點的坐標(biāo)______;
(2)明明想了想,我還有兩個問題呢:
①如果順次連接(1)中的所有點,你知道得到的圖形是______圖形(填“中心對稱”、“旋轉(zhuǎn)對稱”、“軸對稱”);
②指出(1)中關(guān)于點P成中心對稱的點______.

查看答案和解析>>


同步練習(xí)冊答案