題目列表(包括答案和解析)
(本小題滿分12分)如圖,在平面直角坐標(biāo)系中,直線:與軸交于點,與軸交于點,拋物線過點、點,且與軸的另一交點為,其中>0,又點是拋物線的對稱軸上一動點.
(1)求點的坐標(biāo),并在圖1中的上找一點,使到點與點的距離之和最。
(2)若△周長的最小值為,求拋物線的解析式及頂點的坐標(biāo);
(3)如圖2,在線段上有一動點以每秒2個單位的速度從點向點移動(不與端點、重合),過點作∥交軸于點,設(shè)移動的時間為秒,試把△的面積表示成時間的函數(shù),當(dāng)為何值時,有最大值,并求出最大值.
(本小題滿分10分)如圖,在平面直角坐標(biāo)系中,點A、B、C、P的坐標(biāo)分別為(0,1)、(-1,0)、(1,0)、(-1,-1)。
1.(1)求經(jīng)過A、B、C三點的拋物線的表達式;
2.(2)以P為位似中心,將△ABC放大,使得放大后的△A1B1C1與△OAB對應(yīng)線段的比為3:1,請在右圖網(wǎng)格中畫出放大后的△A1B1C1;(所畫△A1B1C1與△ABC在點P同側(cè));
3.(3)經(jīng)過A1、B1、C1三點的拋物線能否由(1)中的拋物線平移得到?請說明理由。
(本小題滿分10分)
如圖14①至圖14④中,兩平行線AB、CD音的距離均為6,點M為AB上一定點.
思考:如圖14①中,圓心為O的半圓形紙片在AB、CD之間(包括AB、CD),其直徑MN在AB上,MN=8,點P為半圓上一點,設(shè)∠MOP=α,當(dāng)α=________度時,點P到CD的距離最小,最小值為____________.
探究一在圖14①的基礎(chǔ)上,以點M為旋轉(zhuǎn)中心,在AB、CD之間順時針旋轉(zhuǎn)該半圓形紙片,直到不能再轉(zhuǎn)動為止.如圖14②,得到最大旋轉(zhuǎn)角∠BMO=_______度,此時點N到CD的距離是______________.
探究二將圖14①中的扇形紙片NOP按下面對α的要求剪掉,使扇形紙片MOP繞點M在AB、CD之間順時針旋轉(zhuǎn).
⑴如圖14③,當(dāng)α=60°時,求在旋轉(zhuǎn)過程中,點P到CD的最小距離,并請指出旋轉(zhuǎn)角∠BMO的最大值:
⑵如圖14④,在扇形紙片MOP旋轉(zhuǎn)過程中,要保證點P能落在直線CD上,請確定α的取值范圍.
(參考數(shù)據(jù):sin49°=,cos41°=,tan37°=)
(本小題滿分10分)
如圖14①至圖14④中,兩平行線AB、CD音的距離均為6,點M為AB上一定點.
思考:如圖14①中,圓心為O的半圓形紙片在AB、CD之間(包括AB、CD),其直徑MN在AB上,MN=8,點P為半圓上一點,設(shè)∠MOP=α,當(dāng)α=________度時,點P到CD的距離最小,最小值為____________.
探究一在圖14①的基礎(chǔ)上,以點M為旋轉(zhuǎn)中心,在AB、CD之間順時針旋轉(zhuǎn)該半圓形紙片,直到不能再轉(zhuǎn)動為止.如圖14②,得到最大旋轉(zhuǎn)角∠BMO=_______度,此時點N到CD的距離是______________.
探究二將圖14①中的扇形紙片NOP按下面對α的要求剪掉,使扇形紙片MOP繞點M在AB、CD之間順時針旋轉(zhuǎn).
⑴如圖14③,當(dāng)α=60°時,求在旋轉(zhuǎn)過程中,點P到CD的最小距離,并請指出旋轉(zhuǎn)角∠BMO的最大值:
⑵如圖14④,在扇形紙片MOP旋轉(zhuǎn)過程中,要保證點P能落在直線CD上,請確定α的取值范圍.
(參考數(shù)據(jù):sin49°=,cos41°=,tan37°=)
(本小題滿分12分)在平面直角坐標(biāo)系中,一次函數(shù)的圖象與坐標(biāo)軸圍成的三角形,叫做此一次函數(shù)的坐標(biāo)三角形.例如,圖中的一次函數(shù)的圖象與x,y軸分別交于點A,B,則△OAB為此函數(shù)的坐標(biāo)三角形.(1)求函數(shù)y=x+3的坐標(biāo)三角形的三條邊長; (2)若
函數(shù)y=x+b(b為常數(shù))的坐標(biāo)三角形周長為16, 求此三角形面積.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com