6.如上圖.給出了過直線外一點(diǎn)作已知直線的平行線的方法.其依據(jù)是 (A)兩直線平行.同位角相等 (B)同位角相等.兩直線平行(C)內(nèi)錯(cuò)角相等.兩直線平行 (D)同旁內(nèi)角互補(bǔ).兩直線平行 查看更多

 

題目列表(包括答案和解析)

23、我們給出如下定義:若一個(gè)四邊形中存在相鄰兩邊的平方和等于一條對(duì)角線的平方,則稱這個(gè)四邊形為勾股四邊形,這兩條相鄰的邊稱為這個(gè)四邊形的勾股邊.
(1)除了正方形外,寫出你所學(xué)過的特殊四邊形中是勾股四邊形的兩種圖形的名稱:
矩形、直角梯形

(2)如圖1,已知格點(diǎn)(小正方形的頂點(diǎn))O(0,0),A(3,0),B(0,4),請(qǐng)你畫出以格點(diǎn)為頂點(diǎn),OA,OB為勾股邊且對(duì)角線相等的勾股四邊形OAMB,并寫出點(diǎn)M的坐標(biāo);
(3)如圖2,以△ABC的邊AB,AC為邊,向三角形外作正方形ABDE及ACFG,連接CE,BG相交于O點(diǎn),P是線段DE上任意一點(diǎn).求證:四邊形OBPE是勾股四邊形.

查看答案和解析>>

已知AB是⊙O的直徑,C是⊙O上一點(diǎn),連接AC,過點(diǎn)C作CD⊥AB于點(diǎn)D.
(1)當(dāng)點(diǎn)E為DB上任意一點(diǎn)(點(diǎn)D、B除外)時(shí),連接CE并延長(zhǎng)交⊙O于點(diǎn)F,AF與CD的延長(zhǎng)線交于點(diǎn)G(如圖①).
求證:AC2=AG•AF.
(2)李明證明(1)的結(jié)論后,又作了以下探究:當(dāng)點(diǎn)E為AD上任意一點(diǎn)(點(diǎn)A、D除外)時(shí),連接CE并延長(zhǎng)交⊙O于點(diǎn)F,連接AF并延長(zhǎng)與CD的延長(zhǎng)線在圓外交于點(diǎn)G,CG與⊙O相交于點(diǎn)H(如圖②).連接FH后,他驚奇地發(fā)現(xiàn)∠GFH=∠AFC.根據(jù)這一條件,可證GF•GA=GH•GC.請(qǐng)你幫李明給出證明.
(3)當(dāng)點(diǎn)E為AB的延長(zhǎng)線上或反向延長(zhǎng)線上任意一點(diǎn)(點(diǎn)A、B除外)時(shí),如圖③、④所示,還有許多結(jié)論成立.請(qǐng)你根據(jù)圖③或圖④再寫出兩個(gè)類似問題(1)、(2)的結(jié)論(兩角、兩弧、精英家教網(wǎng)兩線段相等或不相等的關(guān)系除外)(不要求證明).

查看答案和解析>>

已知AB是⊙O的直徑,C是⊙O上一點(diǎn),連接AC,過點(diǎn)C作CD⊥AB于點(diǎn)D.
(1)當(dāng)點(diǎn)E為DB上任意一點(diǎn)(點(diǎn)D、B除外)時(shí),連接CE并延長(zhǎng)交⊙O于點(diǎn)F,AF與CD的延長(zhǎng)線交于點(diǎn)G(如圖①).
求證:AC2=AG•AF.
(2)李明證明(1)的結(jié)論后,又作了以下探究:當(dāng)點(diǎn)E為AD上任意一點(diǎn)(點(diǎn)A、D除外)時(shí),連接CE并延長(zhǎng)交⊙O于點(diǎn)F,連接AF并延長(zhǎng)與CD的延長(zhǎng)線在圓外交于點(diǎn)G,CG與⊙O相交于點(diǎn)H(如圖②).連接FH后,他驚奇地發(fā)現(xiàn)∠GFH=∠AFC.根據(jù)這一條件,可證GF•GA=GH•GC.請(qǐng)你幫李明給出證明.
(3)當(dāng)點(diǎn)E為AB的延長(zhǎng)線上或反向延長(zhǎng)線上任意一點(diǎn)(點(diǎn)A、B除外)時(shí),如圖③、④所示,還有許多結(jié)論成立.請(qǐng)你根據(jù)圖③或圖④再寫出兩個(gè)類似問題(1)、(2)的結(jié)論(兩角、兩弧、兩線段相等或不相等的關(guān)系除外)(不要求證明).

查看答案和解析>>

已知AB是⊙O的直徑,C是⊙O上一點(diǎn),連接AC,過點(diǎn)C作CD⊥AB于點(diǎn)D。
(1)當(dāng)點(diǎn)E為DB上任意一點(diǎn)(點(diǎn)D、B除外)時(shí),連接CE并延長(zhǎng)交⊙O于點(diǎn)F,AF與CD的延長(zhǎng)線交于點(diǎn)G(如圖①),求證:AC2=AG·AF;
(2)李明證明(1)的結(jié)論后,又作了以下探究:當(dāng)點(diǎn)E為AD上任意一點(diǎn)(點(diǎn)A、D除外)時(shí),連接CE并延長(zhǎng)交⊙O于點(diǎn)F,連接AF并延長(zhǎng)與CD的延長(zhǎng)線在圓外交于點(diǎn)G,CG與⊙O相交于點(diǎn)H(如圖②),連接FH后,他驚奇的發(fā)現(xiàn)∠GFH=∠AFC,根據(jù)這一條件,可證GF·GA=GH·GC,請(qǐng)你幫李明給出證明;
(3)當(dāng)點(diǎn)E為AB的延長(zhǎng)線上或反向延長(zhǎng)線上任意一點(diǎn)(點(diǎn)A、B除外)時(shí),如圖③、④所示,還有許多結(jié)論成立,請(qǐng)你根據(jù)圖③或圖④再寫出兩個(gè)類似問題(1)、(2)的結(jié)論(兩角、兩弧、兩線段相等或不相等的關(guān)系除外)(不要求證明)。

圖1                             圖2                                圖3                             圖4

查看答案和解析>>

已知AB是⊙O的直徑,C是⊙O上一點(diǎn),連接AC,過點(diǎn)CCDAB于點(diǎn)D

(1)當(dāng)點(diǎn)EDB上任意一點(diǎn)(點(diǎn)DB除外)時(shí),連接CE并延長(zhǎng)交⊙O于點(diǎn)F,AFCD的延長(zhǎng)線交于點(diǎn)G(如圖①).求證:AC2AG·AF

(2)李明證明(1)的結(jié)論后,又作了以下探究:當(dāng)點(diǎn)EAD上任意一點(diǎn)(點(diǎn)AD除外)時(shí),連接CE并延長(zhǎng)交⊙O于點(diǎn)F,連接AF并延長(zhǎng)與CD的延長(zhǎng)線在圓外交于點(diǎn)G,CG與⊙O相交于點(diǎn)H(如圖②).連接FH后,他驚奇的發(fā)現(xiàn)∠GFH=∠AFC.根據(jù)這一條件,可證GF·GAGH·GC.請(qǐng)你幫李明給出證明.

(3)當(dāng)點(diǎn)EAB的延長(zhǎng)線上或反向延長(zhǎng)線上任意一點(diǎn)(點(diǎn)A、B除外)時(shí),如圖③、④所示,還有許多結(jié)論成立.請(qǐng)你根據(jù)圖③或圖④再寫出兩個(gè)類似問題(1)、(2)的結(jié)論(兩角、兩弧、兩線段相等或不相等的關(guān)系除外)(不要求證明).

查看答案和解析>>


同步練習(xí)冊(cè)答案