題目列表(包括答案和解析)
(本小題滿分12分)如圖,在平面直角坐標(biāo)系中,直線:與軸交于點,與軸交于點,拋物線過點、點,且與軸的另一交點為,其中>0,又點是拋物線的對稱軸上一動點.
(1)求點的坐標(biāo),并在圖1中的上找一點,使到點與點的距離之和最;
(2)若△周長的最小值為,求拋物線的解析式及頂點的坐標(biāo);
(3)如圖2,在線段上有一動點以每秒2個單位的速度從點向點移動(不與端點、重合),過點作∥交軸于點,設(shè)移動的時間為秒,試把△的面積表示成時間的函數(shù),當(dāng)為何值時,有最大值,并求出最大值.
(本小題滿分12分)
如圖,AB、BC、CD分別與⊙O切于E、F、G,且AB∥CD.連接OB、OC,延長CO交⊙O于點M,過點M作MN ∥OB交CD于N.
1.⑴求證:MN是⊙O的切線;
2.⑵當(dāng)0B=6cm,OC=8cm時,求⊙O的半徑及圖中陰影部分的面積.
(本小題滿分12分)
甲、乙、丙三個人準(zhǔn)備打羽毛球,他們約定用“拋硬幣”的方式來確定哪兩個人先上場,三人手中各持有一枚質(zhì)地均勻的硬幣,同時將手中硬幣拋落到水平地面為一個回合.落地后,三枚硬幣中,恰有兩枚正面向上或反面向上的這兩枚硬幣持有人先上場;若三枚硬幣均為正面向上或反面向上,屬于不能確定.
1.(1)請你畫出表示“拋硬幣”一個回合所有可能出現(xiàn)的結(jié)果的樹狀圖;
2.(2)求一個回合能確定兩人先上場的概率.
(本小題滿分12分)
如圖,在Rt△OAB中,∠OAB=90°,且點B的坐標(biāo)為(4,2).
1.⑴ 畫出關(guān)于點O成中心對稱的,并寫出點B1的坐標(biāo);
2.⑵ 求出以點B1為頂點,并經(jīng)過點B的二次函數(shù)關(guān)系式.
(本小題滿分12分)
如圖,RtΔABC中,∠ACB=90°,AC=4,BA=5,點P是AC上的動點(P不與A、C重合)PQ⊥AB,垂足為Q.設(shè)PC=x,PQ= y.
1.⑴求y與x的函數(shù)關(guān)系式;
2.⑵試確定此RtΔABC內(nèi)切圓I的半徑,并探求x為何值時,直線PQ與這個內(nèi)切圓I相切?
3.⑶若0<x<1,試判斷以P為圓心,半徑為y的圓與⊙I能否相內(nèi)切,若能求出相應(yīng)的x的值,若不能,請說明理由.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com