恒成立.上單調(diào)遞增, ----9分 查看更多

 

題目列表(包括答案和解析)

已知函數(shù).(

(1)若在區(qū)間上單調(diào)遞增,求實數(shù)的取值范圍;

(2)若在區(qū)間上,函數(shù)的圖象恒在曲線下方,求的取值范圍.

【解析】第一問中,首先利用在區(qū)間上單調(diào)遞增,則在區(qū)間上恒成立,然后分離參數(shù)法得到,進而得到范圍;第二問中,在區(qū)間上,函數(shù)的圖象恒在曲線下方等價于在區(qū)間上恒成立.然后求解得到。

解:(1)在區(qū)間上單調(diào)遞增,

在區(qū)間上恒成立.  …………3分

,而當時,,故. …………5分

所以.                 …………6分

(2)令,定義域為

在區(qū)間上,函數(shù)的圖象恒在曲線下方等價于在區(qū)間上恒成立.   

        …………9分

① 若,令,得極值點,

,即時,在(,+∞)上有,此時在區(qū)間上是增函數(shù),并且在該區(qū)間上有,不合題意;

,即時,同理可知,在區(qū)間上遞增,

,也不合題意;                     …………11分

② 若,則有,此時在區(qū)間上恒有,從而在區(qū)間上是減函數(shù);

要使在此區(qū)間上恒成立,只須滿足,

由此求得的范圍是.        …………13分

綜合①②可知,當時,函數(shù)的圖象恒在直線下方.

 

查看答案和解析>>

(本小題滿分9分)

已知函數(shù)。

 

(Ⅰ)當時,求函數(shù)的單調(diào)遞增區(qū)間;

(Ⅱ)求的極大值;

(Ⅲ)求證:對于任意,函數(shù)上恒成立。

 

查看答案和解析>>

(本小題滿分9分)
已知函數(shù)。
(Ⅰ)當時,求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)求的極大值;
(Ⅲ)求證:對于任意,函數(shù)上恒成立。

查看答案和解析>>

(本小題滿分9分)
已知函數(shù)。
(Ⅰ)當時,求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)求的極大值;
(Ⅲ)求證:對于任意,函數(shù)上恒成立。

查看答案和解析>>

已知函數(shù) R).

(Ⅰ)若 ,求曲線  在點  處的的切線方程;

(Ⅱ)若  對任意  恒成立,求實數(shù)a的取值范圍.

【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運用。

第一問中,利用當時,

因為切點為(), 則,                 

所以在點()處的曲線的切線方程為:

第二問中,由題意得,即可。

Ⅰ)當時,

,                                  

因為切點為(), 則,                  

所以在點()處的曲線的切線方程為:.    ……5分

(Ⅱ)解法一:由題意得,.      ……9分

(注:凡代入特殊值縮小范圍的均給4分)

,           

因為,所以恒成立,

上單調(diào)遞增,                            ……12分

要使恒成立,則,解得.……15分

解法二:                 ……7分

      (1)當時,上恒成立,

上單調(diào)遞增,

.                  ……10分

(2)當時,令,對稱軸,

上單調(diào)遞增,又    

① 當,即時,上恒成立,

所以單調(diào)遞增,

,不合題意,舍去  

②當時,, 不合題意,舍去 14分

綜上所述: 

 

查看答案和解析>>


同步練習(xí)冊答案