A.種 B.種 C.種 D.種 (文)某師范大學(xué)的2名男生和4名女生被分配到兩所中學(xué)作實(shí)習(xí)教師.每所中學(xué)分配1名男生和2名女生.則不同的分配方法有 A.6種 B.8種 C.12種 D.16種 查看更多

 

題目列表(包括答案和解析)

(文科做)下列說法正確的是

       A.某廠一批產(chǎn)品的次品率為110,則任意抽取其中10件產(chǎn)品一定會(huì)發(fā)現(xiàn)一件次品

       B.氣象部門預(yù)報(bào)明天下雨的概率是90﹪,說明明天該地區(qū)90﹪的地方要下雨,其余10﹪的地方不會(huì)下雨

       C.某醫(yī)院治療一種疾病的治愈率為10%,那么前9個(gè)病人都沒有治愈,第10個(gè)人就一定能治愈

       D.?dāng)S一枚硬幣,連續(xù)出現(xiàn)5次正面向上,第六次出現(xiàn)反面向上的概率與正面向上的概率仍然都為0.5.

 

查看答案和解析>>

將A、B、C、D、E五種不同的文件放入編號(hào)依次為1,2,3,4,5,6的六個(gè)抽屜內(nèi),每個(gè)抽屜至多放一種文件,若文件A、B必須放入相鄰的抽屜內(nèi),文件C、D也必須放入相鄰的抽屜內(nèi),則文件放入抽屜內(nèi)的滿足條件的所有不同的方法有(   )種.


  1. A.
    24
  2. B.
    48
  3. C.
    96
  4. D.
    192

查看答案和解析>>

(2009湖南卷文)某地政府召集5家企業(yè)的負(fù)責(zé)人開會(huì),其中甲企業(yè)有2人到會(huì),其余4家企業(yè)各有1人到會(huì),會(huì)上有3人發(fā)言,則這3人來自3家不同企業(yè)的可能情況的種數(shù)為A.14               B.16                C.20                D.48

查看答案和解析>>


(2009四川卷文)設(shè)矩形的長(zhǎng)為,寬為,其比滿足,這種矩形給人以美感,稱為黃金矩形。黃金矩形常應(yīng)用于工藝品設(shè)計(jì)中。下面是某工藝品廠隨機(jī)抽取兩個(gè)批次的初加工矩形寬度與長(zhǎng)度的比值樣本:
甲批次:0.598   0.625   0.628   0.595   0.639
乙批次:0.618   0.613   0.592   0.622   0.620
根據(jù)上述兩個(gè)樣本來估計(jì)兩個(gè)批次的總體平均數(shù),與標(biāo)準(zhǔn)值0.618比較,正確結(jié)論是
A.甲批次的總體平均數(shù)與標(biāo)準(zhǔn)值更接近
B.乙批次的總體平均數(shù)與標(biāo)準(zhǔn)值更接近
C.兩個(gè)批次總體平均數(shù)與標(biāo)準(zhǔn)值接近程度相同
D.兩個(gè)批次總體平均數(shù)與標(biāo)準(zhǔn)值接近程度不能確定

查看答案和解析>>


(2009四川卷文)設(shè)矩形的長(zhǎng)為,寬為,其比滿足,這種矩形給人以美感,稱為黃金矩形。黃金矩形常應(yīng)用于工藝品設(shè)計(jì)中。下面是某工藝品廠隨機(jī)抽取兩個(gè)批次的初加工矩形寬度與長(zhǎng)度的比值樣本:
甲批次:0.598   0.625   0.628   0.595   0.639
乙批次:0.618   0.613   0.592   0.622   0.620
根據(jù)上述兩個(gè)樣本來估計(jì)兩個(gè)批次的總體平均數(shù),與標(biāo)準(zhǔn)值0.618比較,正確結(jié)論是

A.甲批次的總體平均數(shù)與標(biāo)準(zhǔn)值更接近
B.乙批次的總體平均數(shù)與標(biāo)準(zhǔn)值更接近
C.兩個(gè)批次總體平均數(shù)與標(biāo)準(zhǔn)值接近程度相同
D.兩個(gè)批次總體平均數(shù)與標(biāo)準(zhǔn)值接近程度不能確定

查看答案和解析>>

1.A 2.B 3.B 4.D 5.(理)C。ㄎ模〢 6.B 7.A 8.B 9.A 10.B 11.(理)A。ㄎ模〤 12.B

13.(理)。ㄎ模25,60,15 14.-672 15.2.5小時(shí) 16.①,④

17.設(shè)fx)的二次項(xiàng)系數(shù)為m,其圖象上兩點(diǎn)為(1-x,)、B(1+x,

因?yàn)?sub>,,所以,

x的任意性得fx)的圖象關(guān)于直線x=1對(duì)稱,

m>0,則x≥1時(shí),fx)是增函數(shù),若m<0,則x≥1時(shí),fx)是減函數(shù).

  ∵ ,, ,

  ∴ 當(dāng)時(shí),

,

  ∵ , ∴ 

  當(dāng)時(shí),同理可得

  綜上:的解集是當(dāng)時(shí),為

  當(dāng)時(shí),為,或

18.(理)(1)設(shè)甲隊(duì)在第五場(chǎng)比賽后獲得冠軍為事件M,則第五場(chǎng)比賽甲隊(duì)獲勝,前四場(chǎng)比賽甲隊(duì)獲勝三場(chǎng),依題意得

  (2)設(shè)甲隊(duì)獲得冠軍為事件E,則E包含第四、第五、第六、第七場(chǎng)獲得冠軍四種情況,且它們被彼此互斥.

  ∴ 

 。ㄎ模┰O(shè)甲袋內(nèi)恰好有4個(gè)白球?yàn)槭录?i>B,則B包含三種情況.

  ①甲袋中取2個(gè)白球,且乙袋中取2個(gè)白球,②甲袋中取1個(gè)白球,1個(gè)黑球,且乙袋中取1個(gè)白球,1個(gè)黑球,③甲、乙兩袋中各取2個(gè)黑球.

  ∴ 

19.(1)取中點(diǎn)E,連結(jié)ME、,∴ MCEC.∴ MC.∴ ,MC,N四點(diǎn)共面.

  (2)連結(jié)BD,則BD在平面ABCD內(nèi)的射影.

  ∵ , ∴ Rt△CDM~Rt△BCD,∠DCM=∠CBD

  ∴ ∠CBD+∠BCM=90°. ∴ MCBD.∴ 

  (3)連結(jié),由是正方形,知

  ∵ MC, ∴ ⊥平面

  ∴ 平面⊥平面

 。4)∠與平面所成的角且等于45°.

20.(1).∵ x≥1. ∴ 

  當(dāng)x≥1時(shí),是增函數(shù),其最小值為

  ∴ a<0(a=0時(shí)也符合題意). ∴ a≤0.

 。2),即27-6a-3=0, ∴ a=4.

  ∴ 有極大值點(diǎn),極小值點(diǎn)

  此時(shí)fx)在上時(shí)減函數(shù),在,+上是增函數(shù).

  ∴ fx)在,上的最小值是,最大值是,(因).

21.(1)∵斜率k存在,不妨設(shè)k>0,求出M,2).直線MA方程為,直線MB方程為

  分別與橢圓方程聯(lián)立,可解出,

  ∴ . ∴ (定值).

  (2)設(shè)直線AB方程為,與聯(lián)立,消去y

  由>0得-4<m<4,且m≠0,點(diǎn)MAB的距離為

  設(shè)△AMB的面積為S. ∴ 

  當(dāng)時(shí),得

22.(1)∵ ,a,,

  ∴   ∴   ∴  ∴ 

  ∴ a=2或a=3(a=3時(shí)不合題意,舍去). ∴a=2.

(2),,由可得 

∴ .∴ b=5

 。3)由(2)知,, ∴ 

  ∴ . ∴ ,

  ∵ 

  當(dāng)n≥3時(shí),

  

  

  

  ∴ . 綜上得 

 


同步練習(xí)冊(cè)答案