題目列表(包括答案和解析)
已知函數(shù)的圖像為上的一條連續(xù)不斷的曲線,當(dāng)時(shí),,則關(guān)于的函數(shù)的零點(diǎn)的個(gè)數(shù)為( )
A.0 B.1 C.2 D.0或2
已知函數(shù)的圖像為上的一條連續(xù)不斷的曲線,當(dāng)時(shí),,則關(guān)于的函數(shù)的零點(diǎn)的個(gè)數(shù)為( )
A.0 | B.1 | C.2 | D.0或2 |
已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014040304352617688878/SYS201404030435327549450280_ST.files/image002.png">,值域?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014040304352617688878/SYS201404030435327549450280_ST.files/image003.png">.下列關(guān)于函數(shù)的說法:①當(dāng)時(shí),;②點(diǎn)不在函數(shù)的圖象上;③將的圖像補(bǔ)上點(diǎn)(5,0),得到的圖像必定是一條連續(xù)的曲線;④的圖象與坐標(biāo)軸只有一個(gè)交點(diǎn).其中一定正確的說法的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013080512213268898492/SYS201308051222069045733946_ST.files/image002.png">,部分對(duì)應(yīng)值如下表。的導(dǎo)函數(shù)的圖像如圖所示。
0 |
|||||
下列關(guān)于函數(shù)的命題:
①函數(shù)在上是減函數(shù);②如果當(dāng)時(shí),最大值是,那么的最大值為;③函數(shù)有個(gè)零點(diǎn),則;④已知是的一個(gè)單調(diào)遞減區(qū)間,則的最大值為。
其中真命題的個(gè)數(shù)是( )
A、4個(gè) B、3個(gè) C、2個(gè) D、1個(gè)
已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/aa/c/1sdp04.png" style="vertical-align:middle;" />,部分對(duì)應(yīng)值如下表。的導(dǎo)函數(shù)的圖像如圖所示。
0 | |||||
1.A 2.B 3.B 4.D 5.(理)C (文)A 6.B 7.A 8.B 9.A 10.B 11.(理)A。ㄎ模〤 12.B
13.(理) (文)25,60,15 14.-672 15.2.5小時(shí) 16.①,④
17.設(shè)f(x)的二次項(xiàng)系數(shù)為m,其圖象上兩點(diǎn)為(1-x,)、B(1+x,)
因?yàn)?sub>,,所以,
由x的任意性得f(x)的圖象關(guān)于直線x=1對(duì)稱,
若m>0,則x≥1時(shí),f(x)是增函數(shù),若m<0,則x≥1時(shí),f(x)是減函數(shù).
∵ ,,,, ,
∴ 當(dāng)時(shí),
,.
∵ , ∴ .
當(dāng)時(shí),同理可得或.
綜上:的解集是當(dāng)時(shí),為;
當(dāng)時(shí),為,或.
18.(理)(1)設(shè)甲隊(duì)在第五場(chǎng)比賽后獲得冠軍為事件M,則第五場(chǎng)比賽甲隊(duì)獲勝,前四場(chǎng)比賽甲隊(duì)獲勝三場(chǎng),依題意得.
。2)設(shè)甲隊(duì)獲得冠軍為事件E,則E包含第四、第五、第六、第七場(chǎng)獲得冠軍四種情況,且它們被彼此互斥.
∴ .
。ㄎ模┰O(shè)甲袋內(nèi)恰好有4個(gè)白球?yàn)槭录?i>B,則B包含三種情況.
、偌状腥2個(gè)白球,且乙袋中取2個(gè)白球,②甲袋中取1個(gè)白球,1個(gè)黑球,且乙袋中取1個(gè)白球,1個(gè)黑球,③甲、乙兩袋中各取2個(gè)黑球.
∴ .
19.(1)取中點(diǎn)E,連結(jié)ME、,∴ ,MCEC.∴ MC.∴ ,M,C,N四點(diǎn)共面.
。2)連結(jié)BD,則BD是在平面ABCD內(nèi)的射影.
∵ , ∴ Rt△CDM~Rt△BCD,∠DCM=∠CBD.
∴ ∠CBD+∠BCM=90°. ∴ MC⊥BD.∴ .
。3)連結(jié),由是正方形,知⊥.
∵ ⊥MC, ∴ ⊥平面.
∴ 平面⊥平面.
。4)∠是與平面所成的角且等于45°.
20.(1).∵ x≥1. ∴ ,
當(dāng)x≥1時(shí),是增函數(shù),其最小值為.
∴ a<0(a=0時(shí)也符合題意). ∴ a≤0.
。2),即27
∴ 有極大值點(diǎn),極小值點(diǎn).
此時(shí)f(x)在,上時(shí)減函數(shù),在,+上是增函數(shù).
∴ f(x)在,上的最小值是,最大值是,(因).
21.(1)∵斜率k存在,不妨設(shè)k>0,求出M(,2).直線MA方程為,直線MB方程為.
分別與橢圓方程聯(lián)立,可解出,.
∴ . ∴ (定值).
。2)設(shè)直線AB方程為,與聯(lián)立,消去y得
.
由>0得-4<m<4,且m≠0,點(diǎn)M到AB的距離為.
設(shè)△AMB的面積為S. ∴ .
當(dāng)時(shí),得.
22.(1)∵ ,a,,
∴ ∴ ∴ ∴ .
∴ a=2或a=3(a=3時(shí)不合題意,舍去). ∴a=2.
(2),,由可得 .
∴ .∴ b=5
。3)由(2)知,, ∴ .
∴ . ∴ ,.
∵ ,.
當(dāng)n≥3時(shí),
.
∴ . 綜上得 .
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com