3.已知函數(shù)的圖像關(guān)于點(diǎn)對(duì)稱.且當(dāng)時(shí)..則當(dāng)時(shí)的解析式為 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)的圖像為上的一條連續(xù)不斷的曲線,當(dāng)時(shí),,則關(guān)于的函數(shù)的零點(diǎn)的個(gè)數(shù)為(     )

A.0          B.1            C.2               D.0或2

 

查看答案和解析>>

已知函數(shù)的圖像為上的一條連續(xù)不斷的曲線,當(dāng)時(shí),,則關(guān)于的函數(shù)的零點(diǎn)的個(gè)數(shù)為(    )

A.0 B.1 C.2 D.0或2 

查看答案和解析>>

已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014040304352617688878/SYS201404030435327549450280_ST.files/image002.png">,值域?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014040304352617688878/SYS201404030435327549450280_ST.files/image003.png">.下列關(guān)于函數(shù)的說法:①當(dāng)時(shí),;②點(diǎn)不在函數(shù)的圖象上;③將的圖像補(bǔ)上點(diǎn)(5,0),得到的圖像必定是一條連續(xù)的曲線;④的圖象與坐標(biāo)軸只有一個(gè)交點(diǎn).其中一定正確的說法的個(gè)數(shù)是(  )

A. 1              B. 2                 C. 3                D. 4

 

查看答案和解析>>

已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013080512213268898492/SYS201308051222069045733946_ST.files/image002.png">,部分對(duì)應(yīng)值如下表。的導(dǎo)函數(shù)的圖像如圖所示。

0

下列關(guān)于函數(shù)的命題:

①函數(shù)上是減函數(shù);②如果當(dāng)時(shí),最大值是,那么的最大值為;③函數(shù)個(gè)零點(diǎn),則;④已知的一個(gè)單調(diào)遞減區(qū)間,則的最大值為。

其中真命題的個(gè)數(shù)是(           )

A、4個(gè)    B、3個(gè)  C、2個(gè)  D、1個(gè)

 

查看答案和解析>>

已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/aa/c/1sdp04.png" style="vertical-align:middle;" />,部分對(duì)應(yīng)值如下表。的導(dǎo)函數(shù)的圖像如圖所示。



0










下列關(guān)于函數(shù)的命題:
①函數(shù)上是減函數(shù);②如果當(dāng)時(shí),最大值是,那么的最大值為;③函數(shù)個(gè)零點(diǎn),則;④已知的一個(gè)單調(diào)遞減區(qū)間,則的最大值為。
其中真命題的個(gè)數(shù)是(           )
A、4個(gè)    B、3個(gè)  C、2個(gè)  D、1個(gè)

查看答案和解析>>

1.A 2.B 3.B 4.D 5.(理)C (文)A 6.B 7.A 8.B 9.A 10.B 11.(理)A。ㄎ模〤 12.B

13.(理) (文)25,60,15 14.-672 15.2.5小時(shí) 16.①,④

17.設(shè)fx)的二次項(xiàng)系數(shù)為m,其圖象上兩點(diǎn)為(1-x,)、B(1+x,

因?yàn)?sub>,,所以

x的任意性得fx)的圖象關(guān)于直線x=1對(duì)稱,

m>0,則x≥1時(shí),fx)是增函數(shù),若m<0,則x≥1時(shí),fx)是減函數(shù).

  ∵ ,,, ,

  ∴ 當(dāng)時(shí),

,

  ∵ , ∴ 

  當(dāng)時(shí),同理可得

  綜上:的解集是當(dāng)時(shí),為;

  當(dāng)時(shí),為,或

18.(理)(1)設(shè)甲隊(duì)在第五場(chǎng)比賽后獲得冠軍為事件M,則第五場(chǎng)比賽甲隊(duì)獲勝,前四場(chǎng)比賽甲隊(duì)獲勝三場(chǎng),依題意得

 。2)設(shè)甲隊(duì)獲得冠軍為事件E,則E包含第四、第五、第六、第七場(chǎng)獲得冠軍四種情況,且它們被彼此互斥.

  ∴ 

 。ㄎ模┰O(shè)甲袋內(nèi)恰好有4個(gè)白球?yàn)槭录?i>B,則B包含三種情況.

 、偌状腥2個(gè)白球,且乙袋中取2個(gè)白球,②甲袋中取1個(gè)白球,1個(gè)黑球,且乙袋中取1個(gè)白球,1個(gè)黑球,③甲、乙兩袋中各取2個(gè)黑球.

  ∴ 

19.(1)取中點(diǎn)E,連結(jié)ME、,∴ ,MCEC.∴ MC.∴ ,M,C,N四點(diǎn)共面.

 。2)連結(jié)BD,則BD在平面ABCD內(nèi)的射影.

  ∵ , ∴ Rt△CDM~Rt△BCD,∠DCM=∠CBD

  ∴ ∠CBD+∠BCM=90°. ∴ MCBD.∴ 

 。3)連結(jié),由是正方形,知

  ∵ MC, ∴ ⊥平面

  ∴ 平面⊥平面

 。4)∠與平面所成的角且等于45°.

20.(1).∵ x≥1. ∴ 

  當(dāng)x≥1時(shí),是增函數(shù),其最小值為

  ∴ a<0(a=0時(shí)也符合題意). ∴ a≤0.

 。2),即27-6a-3=0, ∴ a=4.

  ∴ 有極大值點(diǎn),極小值點(diǎn)

  此時(shí)fx)在,上時(shí)減函數(shù),在,+上是增函數(shù).

  ∴ fx)在,上的最小值是,最大值是,(因).

21.(1)∵斜率k存在,不妨設(shè)k>0,求出M,2).直線MA方程為,直線MB方程為

  分別與橢圓方程聯(lián)立,可解出

  ∴ . ∴ (定值).

 。2)設(shè)直線AB方程為,與聯(lián)立,消去y

  由>0得-4<m<4,且m≠0,點(diǎn)MAB的距離為

  設(shè)△AMB的面積為S. ∴ 

  當(dāng)時(shí),得

22.(1)∵ a,,

  ∴   ∴   ∴  ∴ 

  ∴ a=2或a=3(a=3時(shí)不合題意,舍去). ∴a=2.

(2),,由可得 

∴ .∴ b=5

 。3)由(2)知,, ∴ 

  ∴ . ∴ ,

  ∵ ,

  當(dāng)n≥3時(shí),

  

  

  

  ∴ . 綜上得 

 


同步練習(xí)冊(cè)答案