實數(shù)的取值范圍是 ( ) 查看更多

 

題目列表(包括答案和解析)

實數(shù)的取值范圍是(   )

                                                      

查看答案和解析>>

則實數(shù)的取值范圍是(    )

A. ;B. ;C. ;D.

查看答案和解析>>

則實數(shù)的取值范圍是(    )

A.       B.      C.       D.

 

查看答案和解析>>

則實數(shù)的取值范圍是(    )

A.       B.      C.       D.

 

查看答案和解析>>

則實數(shù)的取值范圍是(   )
A.B.C.D.

查看答案和解析>>

一、填空題:(5’×11=55’)

題號

1

2

3

4

5

6

答案

0

(1,2)

2

題號

7

8

9

10

11

 

答案

4

8.3

②、③

 

二、選擇題:(4’×4=16’)

題號

12

13

14

          <menuitem id="lypvs"><thead id="lypvs"><dl id="lypvs"></dl></thead></menuitem>

            20090116

            答案

            A

            C

            B

            B

            三、解答題:(12’+14’+15’+16’+22’=79’)

            16.(理)解:設為橢圓上的動點,由于橢圓方程為,故

            因為,所以

                推出

            依題意可知,當時,取得最小值.而,

            故有,解得

            又點在橢圓的長軸上,即.故實數(shù)的取值范圍是

            17.解:(1)當時,;

            時,;

            時,;(不單獨分析時的情況不扣分)

            時,

            (2)由(1)知:當時,集合中的元素的個數(shù)無限;

            時,集合中的元素的個數(shù)有限,此時集合為有限集.

            因為,當且僅當時取等號,

            所以當時,集合的元素個數(shù)最少.

            此時,故集合

            18.(本題滿分15分,1小題7分,第2小題8

            解:(1)如圖,建立空間直角坐標系.不妨設

            依題意,可得點的坐標,

                于是,,

               由,則異面直線所成角的

            大小為

            (2)解:連結. 由

            的中點,得;

            ,,得

            ,因此

            由直三棱柱的體積為.可得

            所以,四棱錐的體積為

            19.解:(1)根據(jù)三條規(guī)律,可知該函數(shù)為周期函數(shù),且周期為12.

            由此可得,;

            由規(guī)律②可知,,

            又當時,

            所以,,由條件是正整數(shù),故取

                綜上可得,符合條件.

            (2) 解法一:由條件,,可得

            ,

            ,

            ,

            因為,所以當時,,

            ,即一年中的7,8,9,10四個月是該地區(qū)的旅游“旺季”.

            解法二:列表,用計算器可算得

            月份

            6

            7

            8

            9

            10

            11

            人數(shù)

            383

            463

            499

            482

            416

            319

            故一年中的7,8,9,10四個月是該地區(qū)的旅游“旺季”.

            20.解:(1)依條件得: 則無窮等比數(shù)列各項的和為:

                 ;

              (2)解法一:設此子數(shù)列的首項為,公比為,由條件得:,

            ,即    

             則 .

            所以,滿足條件的無窮等比子數(shù)列存在且唯一,它的首項、公比均為,

            其通項公式為,.

            解法二:由條件,可設此子數(shù)列的首項為,公比為

            ………… ①

            又若,則對每一

            都有………… ②

            從①、②得;

            因而滿足條件的無窮等比子數(shù)列存在且唯一,此子數(shù)列是首項、公比均為無窮等比子

            數(shù)列,通項公式為,

            (3)以下給出若干解答供參考,評分方法參考本小題閱卷說明:

            問題一:是否存在數(shù)列的兩個不同的無窮等比子數(shù)列,使得它們各項的和互為倒數(shù)?若存在,求出所有滿足條件的子數(shù)列;若不存在,說明理由.

            解:假設存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使它們的各項和之積為1。設這兩個子數(shù)列的首項、公比分別為,其中,則

            ,

            因為等式左邊或為偶數(shù),或為一個分數(shù),而等式右邊為兩個奇數(shù)的乘積,還是一個奇數(shù)。故等式不可能成立。所以這樣的兩個子數(shù)列不存在。

            【以上解答屬于層級3,可得設計分4分,解答分6分】

            問題二:是否存在數(shù)列的兩個不同的無窮等比子數(shù)列,使得它們各項的和相等?若存在,求出所有滿足條件的子數(shù)列;若不存在,說明理由.

            解:假設存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使它們的各項和相等。設這兩個子數(shù)列的首項、公比分別為,其中,則

            ………… ①

            ,則①,矛盾;若,則①

            ,矛盾;故必有,不妨設,則

            ………… ②

            1時,②,等式左邊是偶數(shù),

            右邊是奇數(shù),矛盾;

            2時,②

            ,

            兩個等式的左、右端的奇偶性均矛盾;

            綜合可得,不存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使得它們的各項和相等。

            【以上解答屬于層級4,可得設計分5分,解答分7分】

            問題三:是否存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使得其中一個數(shù)列的各項和等于另一個數(shù)列的各項和的倍?若存在,求出所有滿足條件的子數(shù)列;若不存在,說明理由.

            解:假設存在滿足條件的原數(shù)列的兩個不同的無窮等比子數(shù)列。設這兩個子數(shù)列的首項、公比分別為,其中,則

            顯然當時,上述等式成立。例如取,得:

            第一個子數(shù)列:,各項和;第二個子數(shù)列:,

            各項和,有,因而存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使得其中一個數(shù)列的各項和等于另一個數(shù)列的各項和的倍。

            【以上解答屬層級3,可得設計分4分,解答分6分.若進一步分析完備性,可提高一個層級評分】

            問題四:是否存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使得其中一個數(shù)列的各項和等于另一個數(shù)列的各項和的倍?并說明理由.解(略):存在。

            問題五:是否存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使得其中一個數(shù)列的各項和等于另一個數(shù)列的各項和的倍?并說明理由.解(略):不存在.

            【以上問題四、問題五等都屬于層級4的問題設計,可得設計分5分。解答分最高7分】

             


            同步練習冊答案
            <menuitem id="lypvs"></menuitem>
            <li id="lypvs"></li>