14.設(shè).為兩條直線..為兩個平面.下列四個命題中.正確的命題是 ( ) 查看更多

 

題目列表(包括答案和解析)

下列四個命題:
①f(a)f(b)<0 為函數(shù)f(x)在區(qū)間(a,b)內(nèi)存在零點的必要不充分條件;
②從總體中抽取的樣本(x1,y1),(x2,y2),…,(xa,ya),若記
.
X
=
1
n
∑xi,
.
Y
=
1
n
∑yi,則回歸直線
?
y
=bx+a
必過點(
.
X
,
.
Y
);
③設(shè)點P是△ABC所在平面內(nèi)的一點,且
BC
+
BA
=2
BP
,則P為線段AC的中點;
④若空間兩點A(1,2,-1),B(2,0,m)的距離為
14
,則m=2.
其中真命題的個數(shù)為(  )
A、1個B、2個C、3個D、4個

查看答案和解析>>

下列四個命題中,正確的命題的序號是
(1)
(1)

(1)若a,b,c∈R,ac2>bc2,則a>b;
(2)當(dāng)x∈R時,sinx+cosx的最小值是2;
(3)兩條直線互相垂直的充要條件是這兩條直線的斜率乘積為-1
(4)設(shè)F1、F2為定點,P為平面上一動點,若|PF1|+|PF2|=2a( a>0),則動點P的軌跡為橢圓.

查看答案和解析>>

設(shè)、是兩條不同的直線,為兩個不同的平面, 則下列四個命題中不正確的是

     A.      B.

     C.       D.

查看答案和解析>>

設(shè)、是兩條不同的直線,、為兩個不同的平面, 則下列四個命題中不正確的是

     A.      B.

     C.       D.

查看答案和解析>>

在平面直角坐標(biāo)系xOy中,O是坐標(biāo)原點,設(shè)函數(shù)f(x)=k(x-2)+3的圖象為直線l,且l與x軸、y軸分別交于A、B兩點,給出下列四個命題:
①存在正實數(shù)m,使△AOB的面積為m的直線l僅有一條;
②存在正實數(shù)m,使△AOB的面積為m的直線l僅有兩條;
③存在正實數(shù)m,使△AOB的面積為m的直線l僅有三條;
④存在正實數(shù)m,使△AOB的面積為m的直線l僅有四條.
其中所有真命題的序號是(  )

查看答案和解析>>

一、填空題:(5’×11=55’)

題號

1

2

3

4

5

6

答案

0

(1,2)

2

題號

7

8

9

10

11

 

答案

4

8.3

②、③

 

二、選擇題:(4’×4=16’)

題號

12

13

14

      1. <dfn id="1uke5"></dfn>

        20090116

        答案

        A

        C

        B

        B

        三、解答題:(12’+14’+15’+16’+22’=79’)

        16.(理)解:設(shè)為橢圓上的動點,由于橢圓方程為,故

        因為,所以

            推出

        依題意可知,當(dāng)時,取得最小值.而

        故有,解得

        又點在橢圓的長軸上,即.故實數(shù)的取值范圍是

        17.解:(1)當(dāng)時,

        當(dāng)時,;

        當(dāng)時,;(不單獨分析時的情況不扣分)

        當(dāng)時,

        (2)由(1)知:當(dāng)時,集合中的元素的個數(shù)無限;

        當(dāng)時,集合中的元素的個數(shù)有限,此時集合為有限集.

        因為,當(dāng)且僅當(dāng)時取等號,

        所以當(dāng)時,集合的元素個數(shù)最少.

        此時,故集合

        18.(本題滿分15分,1小題7分,第2小題8

        解:(1)如圖,建立空間直角坐標(biāo)系.不妨設(shè)

        依題意,可得點的坐標(biāo),

            于是,

           由,則異面直線所成角的

        大小為

        (2)解:連結(jié). 由,

        的中點,得;

        ,,得

        ,因此

        由直三棱柱的體積為.可得

        所以,四棱錐的體積為

        19.解:(1)根據(jù)三條規(guī)律,可知該函數(shù)為周期函數(shù),且周期為12.

        由此可得,

        由規(guī)律②可知,,

        ;

        又當(dāng)時,,

        所以,,由條件是正整數(shù),故取

            綜上可得,符合條件.

        (2) 解法一:由條件,,可得

        ,

        ,

        ,

        因為,,所以當(dāng)時,

        ,即一年中的7,8,9,10四個月是該地區(qū)的旅游“旺季”.

        解法二:列表,用計算器可算得

        月份

        6

        7

        8

        9

        10

        11

        人數(shù)

        383

        463

        499

        482

        416

        319

        故一年中的7,8,9,10四個月是該地區(qū)的旅游“旺季”.

        20.解:(1)依條件得: 則無窮等比數(shù)列各項的和為:

            

          (2)解法一:設(shè)此子數(shù)列的首項為,公比為,由條件得:,

        ,即    

         則 .

        所以,滿足條件的無窮等比子數(shù)列存在且唯一,它的首項、公比均為,

        其通項公式為,.

        解法二:由條件,可設(shè)此子數(shù)列的首項為,公比為

        ………… ①

        又若,則對每一

        都有………… ②

        從①、②得;

        ;

        因而滿足條件的無窮等比子數(shù)列存在且唯一,此子數(shù)列是首項、公比均為無窮等比子

        數(shù)列,通項公式為,

        (3)以下給出若干解答供參考,評分方法參考本小題閱卷說明:

        問題一:是否存在數(shù)列的兩個不同的無窮等比子數(shù)列,使得它們各項的和互為倒數(shù)?若存在,求出所有滿足條件的子數(shù)列;若不存在,說明理由.

        解:假設(shè)存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使它們的各項和之積為1。設(shè)這兩個子數(shù)列的首項、公比分別為,其中,則

        因為等式左邊或為偶數(shù),或為一個分?jǐn)?shù),而等式右邊為兩個奇數(shù)的乘積,還是一個奇數(shù)。故等式不可能成立。所以這樣的兩個子數(shù)列不存在。

        【以上解答屬于層級3,可得設(shè)計分4分,解答分6分】

        問題二:是否存在數(shù)列的兩個不同的無窮等比子數(shù)列,使得它們各項的和相等?若存在,求出所有滿足條件的子數(shù)列;若不存在,說明理由.

        解:假設(shè)存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使它們的各項和相等。設(shè)這兩個子數(shù)列的首項、公比分別為,其中,則

        ………… ①

        ,則①,矛盾;若,則①

        ,矛盾;故必有,不妨設(shè),則

        ………… ②

        1當(dāng)時,②,等式左邊是偶數(shù),

        右邊是奇數(shù),矛盾;

        2當(dāng)時,②

        ,

        兩個等式的左、右端的奇偶性均矛盾;

        綜合可得,不存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使得它們的各項和相等。

        【以上解答屬于層級4,可得設(shè)計分5分,解答分7分】

        問題三:是否存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使得其中一個數(shù)列的各項和等于另一個數(shù)列的各項和的倍?若存在,求出所有滿足條件的子數(shù)列;若不存在,說明理由.

        解:假設(shè)存在滿足條件的原數(shù)列的兩個不同的無窮等比子數(shù)列。設(shè)這兩個子數(shù)列的首項、公比分別為,其中,則

        ,

        顯然當(dāng)時,上述等式成立。例如取,得:

        第一個子數(shù)列:,各項和;第二個子數(shù)列:

        各項和,有,因而存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使得其中一個數(shù)列的各項和等于另一個數(shù)列的各項和的倍。

        【以上解答屬層級3,可得設(shè)計分4分,解答分6分.若進(jìn)一步分析完備性,可提高一個層級評分】

        問題四:是否存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使得其中一個數(shù)列的各項和等于另一個數(shù)列的各項和的倍?并說明理由.解(略):存在。

        問題五:是否存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使得其中一個數(shù)列的各項和等于另一個數(shù)列的各項和的倍?并說明理由.解(略):不存在.

        【以上問題四、問題五等都屬于層級4的問題設(shè)計,可得設(shè)計分5分。解答分最高7分】

         


        同步練習(xí)冊答案