A. 或0, B., C. 2或, D.或. 查看更多

 

題目列表(包括答案和解析)

有A、B、C、D、E五支足球隊參加某足球邀請賽,比賽采用單循環(huán)制(每兩隊都要比賽一場),每場比賽勝隊得3分,負隊得0分;若為平局則雙方各得1分.已知任何一個隊打勝、打平或被打敗的概率都是
13

(1)求打完全部比賽A隊取得3分的概率;
(2)求打完全部比賽A隊勝的次數(shù)多于負的次數(shù)的概率.

查看答案和解析>>

有A、B、C、D、E五支足球隊參加某足球邀請賽,比賽采用單循環(huán)制(每兩隊都要比賽一場),每場比賽勝隊得3分,負隊得0分;若為平局則雙方各得1分.已知任何一個隊打勝、打平或被打敗的概率都是
1
3

(1)求打完全部比賽A隊取得3分的概率;
(2)求打完全部比賽A隊勝的次數(shù)多于負的次數(shù)的概率.

查看答案和解析>>

有A、B、C、D、E五支足球隊參加某足球邀請賽,比賽采用單循環(huán)制(每兩隊都要比賽一場),每場比賽勝隊得3分,負隊得0分;若為平局則雙方各得1分.已知任何一個隊打勝、打平或被打敗的概率都是
1
3

(1)求打完全部比賽A隊取得3分的概率;
(2)求打完全部比賽A隊勝的次數(shù)多于負的次數(shù)的概率.

查看答案和解析>>

有A、B、C、D、E五支足球隊參加某足球邀請賽,比賽采用單循環(huán)制(每兩隊都要比賽一場),每場比賽勝隊得3分,負隊得0分;若為平局則雙方各得1分.已知任何一個隊打勝、打平或被打敗的概率都是
(1)求打完全部比賽A隊取得3分的概率;
(2)求打完全部比賽A隊勝的次數(shù)多于負的次數(shù)的概率.

查看答案和解析>>

集合C={f(x)|f(x)是在其定義域上的單調(diào)增函數(shù)或單調(diào)減函數(shù)},集合D={f(x)|f(x)在定義域內(nèi)存在區(qū)間[a,b],使得f(x)在a,b上的值域是[ka,kb],k為常數(shù)}.
(1)當k=時,判斷函數(shù)f(x)=是否屬于集合C∩D?并說明理由.若是,則求出區(qū)間[a,b];
(2)當k=0時,若函數(shù)f(x)=+t∈C∩D,求實數(shù)t的取值范圍;
(3)當k=1時,是否存在實數(shù)m,當a+b≤2時,使函數(shù)f(x)=x2-2x+m∈D,若存在,求出m的范圍,若不存在,說明理由.

查看答案和解析>>

一、填空題:(5’×11=55’)

題號

1

2

3

4

5

6

答案

0

(1,2)

2

題號

7

8

9

10

11

 

答案

4

8.3

②、③

 

二、選擇題:(4’×4=16’)

題號

12

13

14

15

答案

A

C

B

  • <option id="0iwqo"></option>

      20090116

      三、解答題:(12’+14’+15’+16’+22’=79’)

      16.解:由條件,可得,故左焦點的坐標為

      為橢圓上的動點,由于橢圓方程為,故

      因為,所以

      ,

      由二次函數(shù)性質(zhì)可知,當時,取得最小值4.

      所以,的模的最小值為2,此時點坐標為

      17.解:(1)當時,

      時,;

      時,;(不單獨分析時的情況不扣分)

      時,

      (2)由(1)知:當時,集合中的元素的個數(shù)無限;

      時,集合中的元素的個數(shù)有限,此時集合為有限集.

      因為,當且僅當時取等號,

      所以當時,集合的元素個數(shù)最少.

      此時,故集合

      18.(本題滿分15分,1小題6分,第2小題9

      解:

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       (2)解:如圖所示.由,,則

      所以,四棱錐的體積為

      19.解:(1)根據(jù)三條規(guī)律,可知該函數(shù)為周期函數(shù),且周期為12.

      由此可得,;

      由規(guī)律②可知,,

      又當時,,

      所以,,由條件是正整數(shù),故取

          綜上可得,符合條件.

      (2) 解法一:由條件,,可得

      ,

      ,

      因為,所以當時,,

      ,即一年中的7,8,9,10四個月是該地區(qū)的旅游“旺季”.

      解法二:列表,用計算器可算得

      月份

      6

      7

      8

      9

      10

      11

      人數(shù)

      383

      463

      499

      482

      416

      319

      故一年中的7,8,9,10四個月是該地區(qū)的旅游“旺季”.

      20.解:(1)依條件得: 則無窮等比數(shù)列各項的和為:

           ;

        (2)解法一:設此子數(shù)列的首項為,公比為,由條件得:,

      ,即    

       則 .

      所以,滿足條件的無窮等比子數(shù)列存在且唯一,它的首項、公比均為,

      其通項公式為.

      解法二:由條件,可設此子數(shù)列的首項為,公比為

      ………… ①

      又若,則對每一

      都有………… ②

      從①、②得;

      因而滿足條件的無窮等比子數(shù)列存在且唯一,此子數(shù)列是首項、公比均為無窮等比子

      數(shù)列,通項公式為

      (3)以下給出若干解答供參考,評分方法參考本小題閱卷說明:

      問題一:是否存在數(shù)列的兩個不同的無窮等比子數(shù)列,使得它們各項的和互為倒數(shù)?若存在,求出所有滿足條件的子數(shù)列;若不存在,說明理由.

      解:假設存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使它們的各項和之積為1。設這兩個子數(shù)列的首項、公比分別為,其中,則

      因為等式左邊或為偶數(shù),或為一個分數(shù),而等式右邊為兩個奇數(shù)的乘積,還是一個奇數(shù)。故等式不可能成立。所以這樣的兩個子數(shù)列不存在。

      【以上解答屬于層級3,可得設計分4分,解答分6分】

      問題二:是否存在數(shù)列的兩個不同的無窮等比子數(shù)列,使得它們各項的和相等?若存在,求出所有滿足條件的子數(shù)列;若不存在,說明理由.

      解:假設存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使它們的各項和相等。設這兩個子數(shù)列的首項、公比分別為,其中,則

      ………… ①

      ,則①,矛盾;若,則①

      ,矛盾;故必有,不妨設,則

      ………… ②

      1時,②,等式左邊是偶數(shù),

      右邊是奇數(shù),矛盾;

      2時,②

      兩個等式的左、右端的奇偶性均矛盾;

      綜合可得,不存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使得它們的各項和相等。

      【以上解答屬于層級4,可得設計分5分,解答分7分】

      問題三:是否存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使得其中一個數(shù)列的各項和等于另一個數(shù)列的各項和的倍?若存在,求出所有滿足條件的子數(shù)列;若不存在,說明理由.

      解:假設存在滿足條件的原數(shù)列的兩個不同的無窮等比子數(shù)列。設這兩個子數(shù)列的首項、公比分別為,其中,則

      ,

      顯然當時,上述等式成立。例如取,得:

      第一個子數(shù)列:,各項和;第二個子數(shù)列:

      各項和,有,因而存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使得其中一個數(shù)列的各項和等于另一個數(shù)列的各項和的倍。

      【以上解答屬層級3,可得設計分4分,解答分6分.若進一步分析完備性,可提高一個層級評分】

      問題四:是否存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使得其中一個數(shù)列的各項和等于另一個數(shù)列的各項和的倍?并說明理由.解(略):存在。

      問題五:是否存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使得其中一個數(shù)列的各項和等于另一個數(shù)列的各項和的倍?并說明理由.解(略):不存在.

      【以上問題四、問題五等都屬于層級4的問題設計,可得設計分5分。解答分最高7分】

       


      同步練習冊答案