二階矩陣M對應的變換將點分別變成求直線L:x-y=4在此變換下得到的L/的方程[補充習題答案] 查看更多

 

題目列表(包括答案和解析)

本題有(1)、(2)、(3)三個選考題,每題7分,請考生任選2題作答,滿分14分.如果多做,則按所做的前兩題計分
(1)二階矩陣M對應的變換將向量
1
-1
-2
1
分別變換成向量
3
-2
,
-2
1
,直線l在M的變換下所得到的直線l′的方程是2x-y-1=0,求直線l的方程.
(2)過點P(-3,0)且傾斜角為30°的直線l和曲線C:
x=s+
1
s
y=s-
1
s
(s為參數(shù))相交于A,B兩點,求線段AB的長.
(3)若不等式|a-1|≥x+2y+2z,對滿足x2+y2+z2=1的一切實數(shù)x,y,z恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

本題有(1)、(2)、(3)三個選考題,每題7分,請考生任選2題作答,滿分14分.如果多做,則按所做的前兩題計分
(1)二階矩陣M對應的變換將向量
1
-1
,
-2
1
分別變換成向量
3
-2
,
-2
1
,直線l在M的變換下所得到的直線l′的方程是2x-y-1=0,求直線l的方程.
(2)過點P(-3,0)且傾斜角為30°的直線l和曲線C:
x=s+
1
s
y=s-
1
s
(s為參數(shù))相交于A,B兩點,求線段AB的長.
(3)若不等式|a-1|≥x+2y+2z,對滿足x2+y2+z2=1的一切實數(shù)x,y,z恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

本題有(1)、(2)、(3)三個選答題,每小題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計分。作答時,先用2B鉛筆在答題卡上把所選題目對應的題號涂黑,并將所選題號填入括號中。

(1)(本小題滿分7分)選修4-2:矩陣與交換

已知二階矩陣,矩陣M對應的變換將點(2,1)變換成點(4,-1)。求矩陣M將圓變換后的曲線方程。ks*5u

(2)(本小題滿分7分)選修4-4:坐標與參數(shù)方程

以直角坐標系的原點為極點,x軸正半軸為極軸,并在兩種坐標系中取相同的長度單位。已知直線的極坐標方程為,圓C的參數(shù)方程為,(為參數(shù)),求直線被圓C截得的弦長。

(3)(本小題滿分7分)選修4-5:不等式選講

已知a,b,c為實數(shù),且

(I)求證:

(II)求實數(shù)m的取值范圍。

查看答案和解析>>

本題有(1)、(2)、(3)三個選考題,每題7分,請考生任選2題作答,滿分14分.如果多做,則按所做的前兩題計分
(1)二階矩陣M對應的變換將向量,分別變換成向量,,直線l在M的變換下所得到的直線l′的方程是2x-y-1=0,求直線l的方程.
(2)過點P(-3,0)且傾斜角為30°的直線l和曲線C:(s為參數(shù))相交于A,B兩點,求線段AB的長.
(3)若不等式|a-1|≥x+2y+2z,對滿足x2+y2+z2=1的一切實數(shù)x,y,z恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

本題共有(1)、(2)、(3)三個選答題,每題7分,請考生任選2題作答,滿分14分.如果多做,則以所做的前2題計分.
(1)選修4-2:矩陣與變換
已知二階矩陣M有特征值λ=3及對應的一個特征向量e1=
1
1
,并且矩陣M對應的變換將點(-1,2)變換成(9,15).求矩陣M.
(2)選修4-4:坐標系與參數(shù)方程
在直角坐標系xOy中,已知曲線C的參數(shù)方程是
x=2+2sinα
y=2cosα
(α是參數(shù)).
現(xiàn)以原點O為極點,x軸的正半軸為極軸,建立極坐標系,寫出曲線C的極坐標方程.
(3)選修4-5:不等式選講
解不等式|2x+1|-|x-4|>2.

查看答案和解析>>


同步練習冊答案