注:⑴空間的一個平移就是一個向量 查看更多

 

題目列表(包括答案和解析)

(1)對于定義在(0,+∞)上的函數(shù)f(x),滿足xf′(x)+2f(x)<0,求證:函數(shù)y=x2f(x)在(0,+∞)上是減函數(shù);
(2)請你認真研讀(1)中命題并聯(lián)系以下命題:若f(x)是定義在(0,+∞)上的可導函數(shù),滿足xf′(x)+f(x)<0,則y=xf(x)是(0,+∞)上的減函數(shù).然后填空建立一個普遍化的命題:設(shè)f(x)是定義在(0,+∞)上的可導函數(shù),n∈N+,若
x
x
×f′(x)+n×f(x)<0,則
y=xnf(x)
y=xnf(x)
是(0,+∞)上的減函數(shù).
注:命題的普遍化就是從考慮一個對象過渡到考慮包含該對象的一個集合;或者從考慮一個較小的集合過渡到考慮包含該較小集合的更大集合.
(3)證明(2)中建立的普遍化命題.

查看答案和解析>>

(本小題滿分12分)(1)對于定義在上的函數(shù),滿足,求證:函數(shù)上是減函數(shù);

(2)請你認真研讀(1)中命題并聯(lián)系以下命題:若是定義在上的可導函數(shù),滿足,則上的減函數(shù)。然后填空建立一個普遍化的命題:

設(shè)是定義在上的可導函數(shù),,若    +,

         上的減函數(shù)。

注:命題的普遍化就是從考慮一個對象過渡到考慮包含該對象的一個集合;或者從考慮一個較小的集合過渡到考慮包含該較小集合的更大集合。

(3)證明(2)中建立的普遍化命題。

 

查看答案和解析>>

(本小題滿分12分)(1)對于定義在上的函數(shù),滿足,求證:函數(shù)上是減函數(shù);

(2)請你認真研讀(1)中命題并聯(lián)系以下命題:若是定義在上的可導函數(shù),滿足,則上的減函數(shù)。然后填空建立一個普遍化的命題:

設(shè)是定義在上的可導函數(shù),,若    +,

         上的減函數(shù)。

注:命題的普遍化就是從考慮一個對象過渡到考慮包含該對象的一個集合;或者從考慮一個較小的集合過渡到考慮包含該較小集合的更大集合。

(3)證明(2)中建立的普遍化命題。

 

查看答案和解析>>

(本小題滿分12分)(1)對于定義在上的函數(shù),滿足,求證:函數(shù)上是減函數(shù);
(2)請你認真研讀(1)中命題并聯(lián)系以下命題:若是定義在上的可導函數(shù),滿足,則上的減函數(shù)。然后填空建立一個普遍化的命題
設(shè)是定義在上的可導函數(shù),,若   +,
        上的減函數(shù)。
注:命題的普遍化就是從考慮一個對象過渡到考慮包含該對象的一個集合;或者從考慮一個較小的集合過渡到考慮包含該較小集合的更大集合。
(3)證明(2)中建立的普遍化命題。

查看答案和解析>>

下列說法不正確的是(    )

A.只要空間的三個基向量的模為1,就是空間的一個標準正交基底

B.豎坐標為0的向量,平行于x軸與y軸所確定的平面

C.縱坐標為0的向量都共面

D.橫坐標為0的向量都與x軸上的基向量垂直

查看答案和解析>>


同步練習冊答案