解:以矩形的中心為原點(diǎn).平行于10的一邊為x軸建立直角坐標(biāo)系.如圖.易求出兩個(gè)橢圓的方程為..解二者聯(lián)立的方程組.得x2=5,y2=,從而得到兩個(gè)橢圓的交點(diǎn)為四個(gè)(,),(,-),(-,),(-,-)說明:遇到二元二次方程.必要時(shí)可以先解x2,y2,再解x,y 查看更多

 

題目列表(包括答案和解析)

橢圓的中心為原點(diǎn)O,離心率e=
12
,過右焦點(diǎn)F的直線l交橢圓于P、Q兩點(diǎn),且橢圓經(jīng)過點(diǎn)點(diǎn)A(2,0)
(Ⅰ)求橢圓的方程;
(Ⅱ)當(dāng)直線l的斜率為1時(shí),求△POQ的面積.
(Ⅲ)若以O(shè)P、OQ為鄰邊的平行四邊形是矩形,求滿足該條件的直線l的方程.

查看答案和解析>>

(2012•梅州一模)已知有公共焦點(diǎn)的橢圓與雙曲線的中心為原點(diǎn),焦點(diǎn)在x軸上,左、右焦點(diǎn)分別為F1,F(xiàn)2且它們?cè)诘谝幌笙薜慕稽c(diǎn)為P,△PF1F2是以PF1為底邊的等腰三角形,雙曲線的離心率的取值范圍為(1,2),則該橢圓的離心率的取值范圍是( 。

查看答案和解析>>

已知有公共焦點(diǎn)的橢圓與雙曲線中心為原點(diǎn),焦點(diǎn)在x軸上,左右焦點(diǎn)分別為F1,F(xiàn)2,且它們?cè)诘谝幌笙薜慕稽c(diǎn)為P,△PF1F2是以PF1為底邊的等腰三角形.若|PF1|=10,雙曲線的離心率的取值范圍為(1,2).則該橢圓的離心率的取值范圍是
 

查看答案和解析>>

(2012•藍(lán)山縣模擬)某公園的大型中心花園的邊界為橢圓,花園內(nèi)種植各種花草,為增強(qiáng)觀賞性,在橢圓內(nèi)以其中心為直角頂點(diǎn)且關(guān)于中心對(duì)稱的兩個(gè)直角三角形內(nèi)種植名貴花草(如圖),并以該直角三角形斜邊開辟觀賞小道(不計(jì)小道的寬度),某園林公司承接了該中心花園的施工建設(shè),在施工時(shí)發(fā)現(xiàn),橢圓邊界上任意一點(diǎn)到橢圓兩焦點(diǎn)距離和為4(單位:百米),且橢圓上點(diǎn)到焦點(diǎn)的最近距離為1(單位:百米).
(1)試以橢圓中心為原點(diǎn)建立適當(dāng)?shù)淖鴺?biāo)系,求出該橢圓的標(biāo)準(zhǔn)方程;
(2)請(qǐng)計(jì)算觀賞小道的長(zhǎng)度(不計(jì)小道寬度)的最大值.

查看答案和解析>>

已知橢圓的中心為原點(diǎn)O,一個(gè)焦點(diǎn)為F(
3
,0)
,離心率為
3
2
.以原點(diǎn)為圓心的圓O與直線y=x+4
2
互相切,過原點(diǎn)的直線l與橢圓交于A,B兩點(diǎn),與圓O交于C,D兩點(diǎn).
(1)求橢圓和圓O的方程;
(2)線段CD恰好被橢圓三等分,求直線l的方程.

查看答案和解析>>


同步練習(xí)冊(cè)答案