化簡整理得. 查看更多

 

題目列表(包括答案和解析)

閱讀材料:某同學(xué)求解sin18°的值其過程為:設(shè)α=18°,則5α=90°,從而3α=90°-2α,于是cos3α=cos(90°-2α),即cos3α=sin2α,展開得4cos3α-3cosα=2sinαcosα,∴cosα=cos18°≠0,∴4cos2α-3=2sinα,化簡,得4sin2α+2sinα-1=0,解得sinα=
-1±
5
4
,∵sinα=sin18°∈(0,1),∴sinα=
-1+
5
4
(sinα=
-1-
5
4
<0舍去),即sin18°=
-1+
5
4
.試完成以下填空:設(shè)函數(shù)f(x)=ax3+1對任意x∈[-1,1]都有f(x)≥0成立,則實數(shù)a的值為
4
4

查看答案和解析>>

(2012•浙江模擬)平面內(nèi)與直線平行的非零向量稱為直線的方向向量;與直線的方向向量垂直的非零向量稱為直線的法向量.在平面直角坐標系中,利用求動點的軌跡方程的方法,可以求出過點A(2,1)且法向量為
n
=(-1,2)的直線
(點法式)方程為-(x-2)+2(y-1)=0,化簡后得x-2y=0.類比以上求法,在空間直角坐標系中,經(jīng)過點A(2,1,3),且法向量為
n
=(-1,2,1)
的平面(點法式)方程為
x-2y-z+3=0
x-2y-z+3=0
(請寫出化簡后的結(jié)果).

查看答案和解析>>

我們把平面內(nèi)與直線垂直的非零向量稱為直線的法向量,在平面直角坐標系中利用動點軌跡的方法,可以求出過點且法向量的直線(點法式)方程為化簡后得;類比以上求法,在空間直角坐標系中,經(jīng)過點且法向量為的平面(點法式)方程為                               (請寫出化簡后的結(jié)果).

 

查看答案和解析>>

平面內(nèi)與直線平行的非零向量稱為直線的方向向量,與直線的方向向量垂直的非零向量稱為直線的法向量.在平面直角坐標系中,利用求動點軌跡方程的方法,可以求出過點且法向量為的直線(點法式)方程為,化簡后得.則在空間直角坐標系中,平面經(jīng)過點,且法向量為的平面(點法式)方程化簡后的結(jié)果為        

 

查看答案和解析>>

化簡得(  )

A.6    B.2x

C.6或-2x      D.-2x或6或2

查看答案和解析>>


同步練習冊答案