[方法二]參數(shù)法:設圓上任意一點坐標為, 曲線上任意一點得坐標為,則 查看更多

 

題目列表(包括答案和解析)

(2011•臨沂二模)如圖,過圓x2+y2=4與x軸的兩個交點A、B作圓的切線AC、BD,再過圓上任意一點H作圓的切線,交AC、BD與C、D兩點,設AD、BC的交點為R.
(I)求動點R的軌跡E的方程;
(II)設E的上頂點為M,直線l交曲線E于P、Q兩點,問:是否存在這樣的直線l,使點G(1,0)恰為△PQM的垂心?若存在,求出直線l的方程,若不存在,說明理由.

查看答案和解析>>

(2011•崇明縣二模)如圖,已知橢圓
x2
a2
+
y2
b2
=1
(a>b>0),M為橢圓上的一個動點,F(xiàn)1、F2分別為橢圓的左、右焦點,A、B分別為橢圓的一個長軸端點與短軸的端點.當MF2⊥F1F2時,原點O到直線MF1的距離為
1
3
|OF1|.
(1)求a,b滿足的關系式;
(2)當點M在橢圓上變化時,求證:∠F1MF2的最大值為
π
2
;
(3)設圓x2+y2=r2(0<r<b),G是圓上任意一點,過G作圓的切線交橢圓于Q1,Q2兩點,當OQ1⊥OQ2時,求r的值.(用b表示)

查看答案和解析>>

(2012•東城區(qū)二模)若圓C的參數(shù)方程為
x=3cosθ+1
y=3sinθ
(θ為參數(shù)),則圓C的圓心坐標為
(1,0)
(1,0)
,圓C與直線x+y-3=0的交點個數(shù)為
2
2

查看答案和解析>>

已知M(-
3
,0),N(
3
,0)
是平面上的兩個定點,動點P滿足|PM|+|PN|=2
6

(1)求動點P的軌跡方程;
(2)已知圓方程為x2+y2=2,過圓上任意一點作圓的切線,切線與(1)中的軌跡交于A,B兩點,O為坐標原點,設Q為AB的中點,求|OQ|長度的取值范圍.

查看答案和解析>>

設P(x,y)是曲線C:
x=-2+cosθ
y=sinθ
(θ為參數(shù),0≤θ≤2π)上任意一點,求
y
x
的取值范圍.

查看答案和解析>>


同步練習冊答案