如圖.已知曲線:在點(diǎn)處的切線與軸交于點(diǎn).過(guò)點(diǎn)作軸的垂線交曲線于點(diǎn).曲線在點(diǎn)處的切線與軸交于點(diǎn).過(guò)點(diǎn)作軸的垂線交曲線于點(diǎn).--.依次得到一系列點(diǎn)..--..設(shè)點(diǎn)的坐標(biāo)為(). 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)如圖,已知曲線C1:x2+y2=1(|x|<1),C2:x2=8y+1(|x|≥1),動(dòng)直線l與C1相切,與C2相交于A,B兩點(diǎn),曲線C2在A,B處的切線相交于點(diǎn)M.
(1)當(dāng)MA⊥MB時(shí),求直線l的方程;
(2)試問(wèn)在y軸上是否存在兩個(gè)定點(diǎn)T1,T2,當(dāng)直線MT1,MT2斜率存在時(shí),兩直線的斜率之積恒為定值?若存在,求出滿足的T1,T2點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

如圖,已知曲線與拋物線c2:x2=2py(p>0)的交點(diǎn)分別為A、B,曲線c1和拋物線c2在點(diǎn)A處的切線分別為l1、l2,且l1、l2的斜率分別為k1、k2
(Ⅰ)當(dāng)為定值時(shí),求證k1•k2為定值(與p無(wú)關(guān)),并求出這個(gè)定值;
(Ⅱ)若直線l2與y軸的交點(diǎn)為D(0,-2),當(dāng)a2+b2取得最小值9時(shí),求曲線c1和c2的方程.

查看答案和解析>>

如圖,已知曲線與拋物線c2:x2=2py(p>0)的交點(diǎn)分別為A、B,曲線c1和拋物線c2在點(diǎn)A處的切線分別為l1、l2,且l1、l2的斜率分別為k1、k2
(Ⅰ)當(dāng)為定值時(shí),求證k1•k2為定值(與p無(wú)關(guān)),并求出這個(gè)定值;
(Ⅱ)若直線l2與y軸的交點(diǎn)為D(0,-2),當(dāng)a2+b2取得最小值9時(shí),求曲線c1和c2的方程.

查看答案和解析>>

精英家教網(wǎng)已知函數(shù)f(x)=x3+x2,數(shù)列|xn|(xn>0)的第一項(xiàng)xn=1,以后各項(xiàng)按如下方式取定:曲線x=f(x)在(xn+1,f(xn+1))處的切線與經(jīng)過(guò)(0,0)和(xn,f (xn))兩點(diǎn)的直線平行(如圖).
求證:當(dāng)n∈N*時(shí),
(Ⅰ)xn2+xn=3xn+12+2xn+1;
(Ⅱ)(
1
2
)n-1xn≤(
1
2
)n-2

查看答案和解析>>

已知函數(shù)f(x)=ex(x3-6x2+3x+a),
(Ⅰ)當(dāng)a=1時(shí),求函數(shù)在(0,f(0))處的切線方程;
(Ⅱ)若函數(shù)f(x)有三個(gè)極值點(diǎn),求實(shí)數(shù)a的取值范圍;
(Ⅲ)定義:如果曲線C上存在不同點(diǎn)的兩點(diǎn)A(x1,y1 ),B(x2,y2 ),過(guò)AB的中點(diǎn)且垂直于x軸的直線交曲線C于點(diǎn)M,使得直線AB與曲線C在M處的切線平行,則稱(chēng)曲線C有“平衡切線”.
試判斷函數(shù)G(x)=[f'(x)-f(x)]•e-x+ex的圖象是否有“平衡切線”,為什么?

查看答案和解析>>

 

一.選擇題   1-5   6-10   BCDCA  DAABC 

二.填空題   11. ;  12. 2 ; 13. 2236 ;   14. ;  

 15.

三、解答題

16.【解】(Ⅰ)由整理得

,------2分

,      -------5分

,∴。                  -------7分

(Ⅱ)∵,∴最長(zhǎng)邊為,              --------8分

,∴,              --------10分

為最小邊,由余弦定理得,解得,

,即最小邊長(zhǎng)為1                      --------13分

 

17.【解】(Ⅰ)由莖葉圖可求出10次記錄下的有記號(hào)的紅鯽魚(yú)與中國(guó)金魚(yú)數(shù)目的平均數(shù)均為20,故可認(rèn)為池塘中的紅鯽魚(yú)與中國(guó)金魚(yú)的數(shù)目相同,設(shè)池塘中兩種魚(yú)的總數(shù)是,則有

,                                      ------------4分

即   ,                      

所以,可估計(jì)水庫(kù)中的紅鯽魚(yú)與中國(guó)金魚(yú)的數(shù)量均為25000.    ------------7分

(Ⅱ)顯然,,                                 -----------9分

其分布列為

0

1

2

3

4

5

---------11分

數(shù)學(xué)期望.                                  -----------13分

 

18.【解】(Ⅰ)∵,∴,--------2分

    要使有極值,則方程有兩個(gè)實(shí)數(shù)解,

    從而△=,∴.                        ------------4分

(Ⅱ)∵處取得極值,

    ∴

.                                          ------------6分

,

∴當(dāng)時(shí),,函數(shù)單調(diào)遞增,

當(dāng)時(shí),,函數(shù)單調(diào)遞減.

時(shí),處取得最大值,       ------------10分

時(shí),恒成立,

,即,

,即的取值范圍是.------------13分

 

19.【解】法一:(Ⅰ)∵,∴

∵三棱柱中,平面

,∴平面

平面,∴,而,則.---------2分

中,,--------4分

.∴.即

,∴平面.                --------------6分

(Ⅱ)如圖,設(shè),過(guò)的垂線,垂足為,連,平面,為二面角的平面角.        ----------------9分

中,,,

,∴;

中,,

,

.------------11分

∴在中,

故銳二面角的余弦值為.

即平面與平面所成的銳二面角的余弦值為. ----------13分

法二:(Ⅰ)∵,∴

∵三棱柱中平面

,∴平面

為坐標(biāo)原點(diǎn),、所在的直線分別為軸、軸、軸建立如圖所示的空間直角坐標(biāo)系.---------------------2分

易求得,,,,.-----4分

(Ⅰ),,,

,,

,即,

,∴平面.                    ---------------------6分

(Ⅱ)設(shè)是平面的法向量,由

,則是平面的一個(gè)法向量.          --------------------9分

是平面的一個(gè)法向量,          -----------------11分

即平面與平面所成的銳二面角的余弦值為.----------13分

 

20.【解】(Ⅰ)法1:依題意,顯然的斜率存在,可設(shè)直線的方程為

整理得 . ①    ---------------------2分

    設(shè)是方程①的兩個(gè)不同的根,

    ∴,   ②                  ----------------4分

    且,由是線段的中點(diǎn),得

    ,∴

    解得,代入②得,的取值范圍是(12,+∞).  --------------6分

    于是,直線的方程為,即      --------------7分

    法2:設(shè),,則有

          --------2分

    依題意,,∴.                ---------------------4分

的中點(diǎn),

,,從而

又由在橢圓內(nèi),∴,

的取值范圍是.                           ----------------6分

直線的方程為,即.        ----------------7分

(Ⅱ)∵垂直平分,∴直線的方程為,即,

代入橢圓方程,整理得.  ③          -----------------9分

又設(shè),的中點(diǎn)為,則是方程③的兩根,

.-----12分

到直線的距離,故所求的以線段的中點(diǎn)為圓心且與直線相切的圓的方程為:.-----------14分

 

21.【解】(Ⅰ)由求導(dǎo)得,

∴曲線在點(diǎn)處的切線方程為,即

此切線與軸的交點(diǎn)的坐標(biāo)為,

∴點(diǎn)的坐標(biāo)為.即.                -------------------2分

∵點(diǎn)的坐標(biāo)為),在曲線上,所以

∴曲線在點(diǎn)處的切線方程為,---4分

,得點(diǎn)的橫坐標(biāo)為

∴數(shù)列是以2為首項(xiàng),2為公比的等比數(shù)列.

).                                  ---------------------6分

(Ⅱ)設(shè)、

  --------9分==(定值)--------11分

 

(Ⅲ)設(shè)、

=

=

  --------13分

,

為常數(shù),∴=為定值. -----------14分

 


同步練習(xí)冊(cè)答案