題目列表(包括答案和解析)
(本小題滿分13分)有一問題,在半小時(shí)內(nèi),甲能解決它的概率是0.5,乙能解決它的概率是,
如果兩人都試圖獨(dú)立地在半小時(shí)內(nèi)解決它,計(jì)算:w.w.w.k.s.5.u.c.o.m
(1)兩人都未解決的概率;
(2)問題得到解決的概率。
(本小題滿分13分) 已知是等比數(shù)列, ;是等差數(shù)列, , .
(1) 求數(shù)列、的通項(xiàng)公式;
(2) 設(shè)+…+,…,其中,…試比較與的大小,并證明你的結(jié)論.
(本小題滿分13分) 現(xiàn)有一批貨物由海上從A地運(yùn)往B地,已知貨船的最大航行速度為35海里/小時(shí),A地至B地之間的航行距離約為500海里,每小時(shí)的運(yùn)輸成本由燃料費(fèi)和其余費(fèi)用組成,輪船每小時(shí)的燃料費(fèi)用與輪船速度的平方成正比(比例系數(shù)為0.6),其余費(fèi)用為每小時(shí)960元.
(1)把全程運(yùn)輸成本y(元)表示為速度x(海里/小時(shí))的函數(shù);
(2)為了使全程運(yùn)輸成本最小,輪船應(yīng)以多大速度行駛?
(本小題滿分13分)
如圖,ABCD的邊長為2的正方形,直線l與平面ABCD平行,g和F式l上的兩個(gè)不同點(diǎn),且EA=ED,F(xiàn)B=FC, 和是平面ABCD內(nèi)的兩點(diǎn),和都與平面ABCD垂直,
(Ⅰ)證明:直線垂直且平分線段AD:w.w.w.k.s.5.u.c.o.m
(Ⅱ)若∠EAD=∠EAB=60°,EF=2,求多面
體ABCDEF的體積。
一.選擇題 1-5 6-10 BCDCA DAABC
二.填空題 11. ; 12. 2 ; 13. 2236 ; 14. ;
15.
三、解答題
16.【解】(Ⅰ)由整理得,
即,------2分
∴, -------5分
∵,∴。 -------7分
(Ⅱ)∵,∴最長邊為, --------8分
∵,∴, --------10分
∴為最小邊,由余弦定理得,解得,
∴,即最小邊長為1 --------13分
17.【解】(Ⅰ)由莖葉圖可求出10次記錄下的有記號的紅鯽魚與中國金魚數(shù)目的平均數(shù)均為20,故可認(rèn)為池塘中的紅鯽魚與中國金魚的數(shù)目相同,設(shè)池塘中兩種魚的總數(shù)是,則有
, ------------4分
即 ,
所以,可估計(jì)水庫中的紅鯽魚與中國金魚的數(shù)量均為25000. ------------7分
(Ⅱ)顯然,, -----------9分
其分布列為
0
1
2
3
4
5
---------11分
數(shù)學(xué)期望. -----------13分
18.【解】(Ⅰ)∵,∴,--------2分
要使有極值,則方程有兩個(gè)實(shí)數(shù)解,
從而△=,∴. ------------4分
(Ⅱ)∵在處取得極值,
∴,
∴. ------------6分
∴,
∵,
∴當(dāng)時(shí),,函數(shù)單調(diào)遞增,
當(dāng)時(shí),,函數(shù)單調(diào)遞減.
∴時(shí),在處取得最大值, ------------10分
∵時(shí),恒成立,
∴,即,
∴或,即的取值范圍是.------------13分
19.【解】法一:(Ⅰ)∵,∴.
∵三棱柱中,平面.
,∴平面.
∵平面,∴,而,則.---------2分
在與中,∴,--------4分
∴.∴.即.
∵,∴平面. --------------6分
(Ⅱ)如圖,設(shè),過作的垂線,垂足為,連,平面,為二面角的平面角. ----------------9分
在中,,,
∴,∴;
在中,,,
∴,
∴.------------11分
∴在中,,.
故銳二面角的余弦值為.
即平面與平面所成的銳二面角的余弦值為. ----------13分
法二:(Ⅰ)∵,∴.
∵三棱柱中平面∴.
∵,∴平面.
以為坐標(biāo)原點(diǎn),、、所在的直線分別為軸、軸、軸建立如圖所示的空間直角坐標(biāo)系.---------------------2分
易求得,,,,,,.-----4分
(Ⅰ),,,
∵,,
∴,,即,.
∵,∴平面. ---------------------6分
(Ⅱ)設(shè)是平面的法向量,由得
取,則是平面的一個(gè)法向量. --------------------9分
又是平面的一個(gè)法向量, -----------------11分
.
即平面與平面所成的銳二面角的余弦值為.----------13分
20.【解】(Ⅰ)法1:依題意,顯然的斜率存在,可設(shè)直線的方程為,
整理得 . ① ---------------------2分
設(shè)是方程①的兩個(gè)不同的根,
∴, ② ----------------4分
且,由是線段的中點(diǎn),得
,∴.
解得,代入②得,的取值范圍是(12,+∞). --------------6分
于是,直線的方程為,即 --------------7分
法2:設(shè),,則有
--------2分
依題意,,∴. ---------------------4分
∵是的中點(diǎn),
∴,,從而.
又由在橢圓內(nèi),∴,
∴的取值范圍是. ----------------6分
直線的方程為,即. ----------------7分
(Ⅱ)∵垂直平分,∴直線的方程為,即,
代入橢圓方程,整理得. ③ -----------------9分
又設(shè),的中點(diǎn)為,則是方程③的兩根,
∴.-----12分
到直線的距離,故所求的以線段的中點(diǎn)為圓心且與直線相切的圓的方程為:.-----------14分
21.【解】(Ⅰ)由求導(dǎo)得,
∴曲線:在點(diǎn)處的切線方程為,即.
此切線與軸的交點(diǎn)的坐標(biāo)為,
∴點(diǎn)的坐標(biāo)為.即. -------------------2分
∵點(diǎn)的坐標(biāo)為(),在曲線上,所以,
∴曲線:在點(diǎn)處的切線方程為,---4分
令,得點(diǎn)的橫坐標(biāo)為.
∴數(shù)列是以2為首項(xiàng),2為公比的等比數(shù)列.
∴(). ---------------------6分
(Ⅱ)設(shè)、、,
∵
--------9分==(定值)--------11分
(Ⅲ)設(shè)、、
則=
=
--------13分
,
∵為常數(shù),∴=為定值. -----------14分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com