22. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分14分)

已知函數(shù)。

(1)證明:

(2)若數(shù)列的通項公式為,求數(shù)列 的前項和;w.w.w.k.s.5.u.c.o.m    

(3)設(shè)數(shù)列滿足:,設(shè),

若(2)中的滿足對任意不小于2的正整數(shù),恒成立,

試求的最大值。

查看答案和解析>>

(本小題滿分14分)已知,點軸上,點軸的正半軸,點在直線上,且滿足,. w.w.w.k.s.5.u.c.o.m    

(Ⅰ)當(dāng)點軸上移動時,求動點的軌跡方程;

(Ⅱ)過的直線與軌跡交于、兩點,又過、作軌跡的切線、,當(dāng),求直線的方程.

查看答案和解析>>

(本小題滿分14分)設(shè)函數(shù)

 (1)求函數(shù)的單調(diào)區(qū)間;

 (2)若當(dāng)時,不等式恒成立,求實數(shù)的取值范圍;w.w.w.k.s.5.u.c.o.m    

 (3)若關(guān)于的方程在區(qū)間上恰好有兩個相異的實根,求實數(shù)的取值范圍。

查看答案和解析>>

(本小題滿分14分)

已知,其中是自然常數(shù),

(1)討論時, 的單調(diào)性、極值;w.w.w.k.s.5.u.c.o.m    

(2)求證:在(1)的條件下,;

(3)是否存在實數(shù),使的最小值是3,若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

(本小題滿分14分)

設(shè)數(shù)列的前項和為,對任意的正整數(shù),都有成立,記。

(I)求數(shù)列的通項公式;

(II)記,設(shè)數(shù)列的前項和為,求證:對任意正整數(shù)都有;

(III)設(shè)數(shù)列的前項和為。已知正實數(shù)滿足:對任意正整數(shù)恒成立,求的最小值。

查看答案和解析>>

 

一.選擇題   1-5   6-10   11-12     BCDCA  DADBC  AC

 

二.填空題   13.  ;   14. ;    15.

 16.

 

三、解答題

17.【解】(Ⅰ)由整理得,

,------2分

,      -------5分

,∴。                  -------7分

【解】(Ⅱ)∵,∴最長邊為,              --------8分

,∴,              --------10分

為最小邊,由余弦定理得,解得,

,即最小邊長為1                      --------12分

 

18.【解】(Ⅰ)∵,∴.---2分

,得,

,∴,即,∴,------4分

當(dāng)時,,的單調(diào)遞增區(qū)間為;------5分

當(dāng)時,.------6分

的單調(diào)遞減區(qū)間為.------7分

(Ⅱ)∵時,;------8分

時,時,,------9分

處取得極大值-7.  ------10分

,解得.------12分                                

 

19.【解】(Ⅰ)由莖葉圖可求出10次記錄下的有記號的紅鯽魚與中國金魚數(shù)目的平均數(shù)均為20,故可認(rèn)為池塘中的紅鯽魚與中國金魚的數(shù)目相同,設(shè)池塘中兩種魚的總數(shù)是,則有

,                                        ------------3分

即   ,

所以,可估計水庫中的紅鯽魚與中國金魚的數(shù)量均為25000.      ------------6分

(Ⅱ)從上述對總體的估計數(shù)據(jù)獲知,從池塘隨機(jī)捕出1只魚,它是中國金魚的概率為.隨機(jī)地從池塘逐只有放回地捕出5只魚,5只魚都是紅鯽魚的概率是,所以其中至少有一只中國金魚的概率.------12分

20.【解】在中,,,∴

,∴四邊形為正方形.

       ----6分

(Ⅱ)當(dāng)點為棱的中點時,平面.         ------8分

證明如下:

    如圖,取的中點,連、、,

、、分別為、、的中點,

平面,平面,

平面.        ------10分

同理可證平面

,

∴平面平面

平面,∴平面.   ------12分

 

21.【解】(Ⅰ)法1:依題意顯然的斜率存在,可設(shè)直線的方程為,

整理得 . ①    ---------------------2分

    設(shè)是方程①的兩個不同的根,

    ∴,   ②                  ----------------4分

    且,由是線段的中點,得

    ,∴

    解得,這個值滿足②式,

    于是,直線的方程為,即      --------------6分

    法2:設(shè),,則有

          --------2分

    依題意,,∴.            ---------------------4分

的中點, ∴,從而

直線的方程為,即.    ----------------6分

(Ⅱ)∵垂直平分,∴直線的方程為,即,

代入橢圓方程,整理得.  ③             ---------------8分

又設(shè),的中點為,則是方程③的兩根,

,.-----10分

到直線的距離,故所求的以線段的中點為圓心且與直線相切的圓的方程為:.-----------12分

 

22.【解】(Ⅰ)由求導(dǎo)得,

∴曲線在點處的切線方程為,即

此切線與軸的交點的坐標(biāo)為

∴點的坐標(biāo)為.即.                -------------------2分

∵點的坐標(biāo)為),在曲線上,所以,

∴曲線在點處的切線方程為---4分

,得點的橫坐標(biāo)為

∴數(shù)列是以2為首項,2為公比的等比數(shù)列.

).     ------------------6分

(Ⅱ)∵;,

.---------10分

(Ⅲ)因為,所以,

所以數(shù)列的前n項和的前n項和為①,

---------12分

 

②,

①―②得

,

所以          ---------14分

 

 

 

 

 

 

 

 

 


同步練習(xí)冊答案