題目列表(包括答案和解析)
(本小題滿(mǎn)分12分)已知某人工養(yǎng)殖觀賞魚(yú)池塘中養(yǎng)殖著大量的紅鯽魚(yú)與中國(guó)金魚(yú).為了估計(jì)池塘中這兩種魚(yú)的數(shù)量,養(yǎng)殖人員從水庫(kù)中捕出了紅鯽魚(yú)與中國(guó)金魚(yú)各1000只,給每只魚(yú)作上不影響其存活的記號(hào),然后放回池塘,經(jīng)過(guò)一定時(shí)間,再每次從池塘中隨機(jī)地捕出1000只魚(yú),分類(lèi)記錄下其中有記號(hào)的魚(yú)的數(shù)目,隨即將它們放回池塘中.這樣的記錄作了10次,將記錄獲取的數(shù)據(jù)作成如右的莖葉圖.
(Ⅰ)根據(jù)莖葉圖計(jì)算有記號(hào)的紅鯽魚(yú)與中國(guó)金魚(yú)數(shù)目的平均數(shù),并估計(jì)池塘中的紅鯽魚(yú)與中國(guó)金魚(yú)的數(shù)量;
(Ⅱ)隨機(jī)從池塘中逐只、有放回地捕出3只魚(yú),求恰好是1只中國(guó)金魚(yú)、2只紅鯽魚(yú)的概率.
一.選擇題 1-5 6-10 11-12 BCDCA DADBC AC
二.填空題 13. ; 14. ; 15. ;
16.
三、解答題
17.【解】(Ⅰ)由整理得,
即,------2分
∴, -------5分
∵,∴。 -------7分
【解】(Ⅱ)∵,∴最長(zhǎng)邊為, --------8分
∵,∴, --------10分
∴為最小邊,由余弦定理得,解得,
∴,即最小邊長(zhǎng)為1 --------12分
18.【解】(Ⅰ)∵,∴.---2分
令,得,
∵,∴,即,∴,------4分
當(dāng)時(shí),,的單調(diào)遞增區(qū)間為;------5分
當(dāng)時(shí),.------6分
的單調(diào)遞減區(qū)間為和.------7分
(Ⅱ)∵時(shí),;------8分
時(shí),;時(shí),,------9分
∴處取得極大值-7. ------10分
即,解得.------12分
19.【解】(Ⅰ)由莖葉圖可求出10次記錄下的有記號(hào)的紅鯽魚(yú)與中國(guó)金魚(yú)數(shù)目的平均數(shù)均為20,故可認(rèn)為池塘中的紅鯽魚(yú)與中國(guó)金魚(yú)的數(shù)目相同,設(shè)池塘中兩種魚(yú)的總數(shù)是,則有
, ------------3分
即 ,
所以,可估計(jì)水庫(kù)中的紅鯽魚(yú)與中國(guó)金魚(yú)的數(shù)量均為25000. ------------6分
(Ⅱ)從上述對(duì)總體的估計(jì)數(shù)據(jù)獲知,從池塘隨機(jī)捕出1只魚(yú),它是中國(guó)金魚(yú)的概率為.隨機(jī)地從池塘逐只有放回地捕出5只魚(yú),5只魚(yú)都是紅鯽魚(yú)的概率是,所以其中至少有一只中國(guó)金魚(yú)的概率.------12分
20.【解】在中,,,∴.
∵,∴四邊形為正方形.
----6分
(Ⅱ)當(dāng)點(diǎn)為棱的中點(diǎn)時(shí),平面. ------8分
證明如下:
如圖,取的中點(diǎn),連、、,
∵、、分別為、、的中點(diǎn),
∴.
∵平面,平面,
∴平面. ------10分
同理可證平面.
∵,
∴平面平面.
∵平面,∴平面. ------12分
21.【解】(Ⅰ)法1:依題意顯然的斜率存在,可設(shè)直線的方程為,
整理得 . ① ---------------------2分
設(shè)是方程①的兩個(gè)不同的根,
∴, ② ----------------4分
且,由是線段的中點(diǎn),得
,∴.
解得,這個(gè)值滿(mǎn)足②式,
于是,直線的方程為,即 --------------6分
法2:設(shè),,則有
--------2分
依題意,,∴. ---------------------4分
∵是的中點(diǎn), ∴,,從而.
直線的方程為,即. ----------------6分
(Ⅱ)∵垂直平分,∴直線的方程為,即,
代入橢圓方程,整理得. ③ ---------------8分
又設(shè),的中點(diǎn)為,則是方程③的兩根,
∴,.-----10分
到直線的距離,故所求的以線段的中點(diǎn)為圓心且與直線相切的圓的方程為:.-----------12分
22.【解】(Ⅰ)由求導(dǎo)得,
∴曲線:在點(diǎn)處的切線方程為,即.
此切線與軸的交點(diǎn)的坐標(biāo)為,
∴點(diǎn)的坐標(biāo)為.即. -------------------2分
∵點(diǎn)的坐標(biāo)為(),在曲線上,所以,
∴曲線:在點(diǎn)處的切線方程為---4分
令,得點(diǎn)的橫坐標(biāo)為.
∴數(shù)列是以2為首項(xiàng),2為公比的等比數(shù)列.
∴(). ------------------6分
(Ⅱ)∵;,
∴.---------10分
(Ⅲ)因?yàn)?sub>,所以,
所以數(shù)列的前n項(xiàng)和的前n項(xiàng)和為①,
---------12分
②,
①―②得
,
所以 ---------14分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com