(3)當時.函數(shù)y= f (x)的的圖象上任意一點的切線斜率恒大于3m.求m的取值范圍. 查看更多

 

題目列表(包括答案和解析)

函數(shù)y=f (x )=-x3+ax2+b(a,b∈R ),
(Ⅰ)要使y=f(x)在(0,1)上單調(diào)遞增,求a的取值范圍;
(Ⅱ)當a>0時,若函數(shù)滿足y極小值=1,y極大值=,求函數(shù)y=f(x)的解析式;
(Ⅲ)若x∈[0,1]時,y=f(x)圖象上任意一點處的切線傾斜角為θ,求當0≤θ≤時a的取值范圍。

查看答案和解析>>

設(shè)函數(shù)y=f(x)對任意的實數(shù)x,都有f(x)=
12
f(x-1)
,且當x∈[0,1]時,f(x)=27x2(1-x).
(1)若x∈[1,2]時,求y=f(x)的解析式;
(2)對于函數(shù)y=f(x)(x∈[0,+∞)),試問:在它的圖象上是否存在點P,使得函數(shù)在點P處的切線與 x+y=0平行.若存在,那么這樣的點P有幾個;若不存在,說明理由.
(3)已知 n∈N*,且 xn∈x[n,n+1],記 Sn=f(x1)+f(x2)+…+f(xn),求證:0≤Sn<4.

查看答案和解析>>

設(shè)函數(shù)y=f(x)對任意實數(shù)x,都有f(x)=2f(x+1),當x∈[0,1]時,f(x)=
27
4
x2(1-x).
(Ⅰ)已知n∈N+,當x∈[n,n+1]時,求y=f(x)的解析式;
(Ⅱ)求證:對于任意的n∈N+,當x∈[n,n+1]時,都有|f(x)|≤
1
2n
;
(Ⅲ)對于函數(shù)y=f(x)(x∈[0,+∞),若在它的圖象上存在點P,使經(jīng)過點P的切線與直線x+y=1平行,那么這樣點有多少個?并說明理由.

查看答案和解析>>

設(shè)函數(shù)y=f(x)對任意的實數(shù)x,都有,且當x∈[0,1]時,f(x)=27x2(1-x).
(1)若x∈[1,2]時,求y=f(x)的解析式;
(2)對于函數(shù)y=f(x)(x∈[0,+∞)),試問:在它的圖象上是否存在點P,使得函數(shù)在點P處的切線與 x+y=0平行.若存在,那么這樣的點P有幾個;若不存在,說明理由.
(3)已知 n∈N*,且 xn∈x[n,n+1],記 Sn=f(x1)+f(x2)+…+f(xn),求證:0≤Sn<4.

查看答案和解析>>

設(shè)函數(shù)y=f(x)對任意實數(shù)x,都有f(x)=2f(x+1),當x∈[0,1]時,f(x)=數(shù)學公式x2(1-x).
(Ⅰ)已知n∈N+,當x∈[n,n+1]時,求y=f(x)的解析式;
(Ⅱ)求證:對于任意的n∈N+,當x∈[n,n+1]時,都有|f(x)|≤數(shù)學公式;
(Ⅲ)對于函數(shù)y=f(x)(x∈[0,+∞),若在它的圖象上存在點P,使經(jīng)過點P的切線與直線x+y=1平行,那么這樣點有多少個?并說明理由.

查看答案和解析>>


同步練習冊答案