[解析](1)由成等差數(shù)列.得. -2分 查看更多

 

題目列表(包括答案和解析)

已知正項(xiàng)數(shù)列的前n項(xiàng)和滿足:

(1)求數(shù)列的通項(xiàng)和前n項(xiàng)和

(2)求數(shù)列的前n項(xiàng)和;

(3)證明:不等式  對(duì)任意的,都成立.

【解析】第一問中,由于所以

兩式作差,然后得到

從而得到結(jié)論

第二問中,利用裂項(xiàng)求和的思想得到結(jié)論。

第三問中,

       

結(jié)合放縮法得到。

解:(1)∵     ∴

      ∴

      ∴   ∴  ………2分

      又∵正項(xiàng)數(shù)列,∴           ∴ 

又n=1時(shí),

   ∴數(shù)列是以1為首項(xiàng),2為公差的等差數(shù)列……………3分

                             …………………4分

                   …………………5分 

(2)       …………………6分

    ∴

                          …………………9分

(3)

      …………………12分

        ,

   ∴不等式  對(duì)任意的,都成立.

 

查看答案和解析>>

中,是三角形的三內(nèi)角,是三內(nèi)角對(duì)應(yīng)的三邊,已知成等差數(shù)列,成等比數(shù)列

(Ⅰ)求角的大小;

(Ⅱ)若,求的值.

【解析】第一問中利用依題意,故

第二問中,由題意又由余弦定理知

,得到,所以,從而得到結(jié)論。

(1)依題意,故……………………6分

(2)由題意又由余弦定理知

…………………………9分

   故

           代入

 

查看答案和解析>>

已知遞增等差數(shù)列滿足:,且成等比數(shù)列.

(1)求數(shù)列的通項(xiàng)公式

(2)若不等式對(duì)任意恒成立,試猜想出實(shí)數(shù)的最小值,并證明.

【解析】本試題主要考查了數(shù)列的通項(xiàng)公式的運(yùn)用以及數(shù)列求和的運(yùn)用。第一問中,利用設(shè)數(shù)列公差為

由題意可知,即,解得d,得到通項(xiàng)公式,第二問中,不等式等價(jià)于,利用當(dāng)時(shí),;當(dāng)時(shí),;而,所以猜想,的最小值為然后加以證明即可。

解:(1)設(shè)數(shù)列公差為,由題意可知,即,

解得(舍去).      …………3分

所以,.        …………6分

(2)不等式等價(jià)于,

當(dāng)時(shí),;當(dāng)時(shí),;

,所以猜想,的最小值為.     …………8分

下證不等式對(duì)任意恒成立.

方法一:數(shù)學(xué)歸納法.

當(dāng)時(shí),,成立.

假設(shè)當(dāng)時(shí),不等式成立,

當(dāng)時(shí),, …………10分

只要證  ,只要證  ,

只要證  ,只要證  ,

只要證  ,顯然成立.所以,對(duì)任意,不等式恒成立.…14分

方法二:?jiǎn)握{(diào)性證明.

要證 

只要證  ,  

設(shè)數(shù)列的通項(xiàng)公式,        …………10分

,    …………12分

所以對(duì),都有,可知數(shù)列為單調(diào)遞減數(shù)列.

,所以恒成立,

的最小值為

 

查看答案和解析>>


同步練習(xí)冊(cè)答案