11.函數(shù)(.且)與在同一直角坐標(biāo)中的圖像可能是 查看更多

 

題目列表(包括答案和解析)

在平面直角坐標(biāo)系中,若點A、B同時滿足
(1)點A、B都在函數(shù)y=f(x)的圖象上;
(2)點A、B關(guān)于原點對稱.則稱點對(A,B)是函數(shù)y=f(x)的一個“姐妹點對”(規(guī)定點對(A,B)與點對(B,A)是同一個“姐妹點對”).若函數(shù)f(x)=ax-x-a(a>0且a≠1)只有一個“姐妹點對”,則a的取值范圍為
a>1
a>1

查看答案和解析>>

在直角坐標(biāo)系中,如果不同兩點A(a,b),B(-a,-b)都在函數(shù)y=h (x )的圖象上,那么稱[A,B]為函數(shù)h(x)的一組“友好點”([A,B]與[B,A]看作一組).已知定義在[0,+∞)上的函數(shù)f(x)滿足f(x+2)=
2
f(x),且當(dāng)x∈[0,2]時,f(x)=sin
π
2
x.則函數(shù)f(x)=
f(x),0<x≤8
-
-x
,-8≤x<0
的“友好點”的組數(shù)為( 。

查看答案和解析>>

在平面直角坐標(biāo)系中,若點A、B同時滿足
(1)點A、B都在函數(shù)y=f(x)的圖象上;
(2)點A、B關(guān)于原點對稱.則稱點對(A,B)是函數(shù)y=f(x)的一個“姐妹點對”(規(guī)定點對(A,B)與點對(B,A)是同一個“姐妹點對”).若函數(shù)f(x)=ax-x-a(a>0且a≠1)只有一個“姐妹點對”,則a的取值范圍為________.

查看答案和解析>>

在平面直角坐標(biāo)系中,若點A、B同時滿足
(1)點A、B都在函數(shù)y=f(x)的圖象上;
(2)點A、B關(guān)于原點對稱.則稱點對(A,B)是函數(shù)y=f(x)的一個“姐妹點對”(規(guī)定點對(A,B)與點對(B,A)是同一個“姐妹點對”).若函數(shù)f(x)=ax-x-a(a>0且a≠1)只有一個“姐妹點對”,則a的取值范圍為______.

查看答案和解析>>

在平面直角坐標(biāo)系中,若點A、B同時滿足
(1)點A、B都在函數(shù)y=f(x)的圖象上;
(2)點A、B關(guān)于原點對稱.則稱點對(A,B)是函數(shù)y=f(x)的一個“姐妹點對”(規(guī)定點對(A,B)與點對(B,A)是同一個“姐妹點對”).若函數(shù)f(x)=ax-x-a(a>0且a≠1)只有一個“姐妹點對”,則a的取值范圍為   

查看答案和解析>>

一、       

二、13.;14.;15.;16.

詳細參考答案:

1.∵,∴ ,又∵ ,∴ ,選擇B

2.∵,∴ ,選擇D

3.因為陰影部分在集中又在集中,所陰影部分是,選擇A

4.∵的定義域是 ,∴,選擇C

5.∵,∴選擇A

6.由映射的定義:A、B、C不是映射,D是映射.

7.∵上是減函數(shù),∴,即

8.,或,即

9.當(dāng)時,則,由當(dāng)時,得,,又是奇函數(shù),,所以,即

10.∵

    ∴ ,選擇A

11.在A中,由圖像看,直線應(yīng)與軸的截距;在B圖中,經(jīng)過是錯誤的;在D中,經(jīng)過是錯誤的,選擇C

12.根據(jù)奇函數(shù)圖像關(guān)于原點對稱,作出函數(shù)圖像,則不等式

 ,或,所以選擇D

13.∵是偶函數(shù),∴,∴的增函數(shù)區(qū)間是

14.∵,,且,,∴,,則

15.∵在區(qū)間上是奇函數(shù),∴,∴在區(qū)間上的最小值為

16.函數(shù)圖像如圖,方程等價于,或

17.解:∵,

,,---------6分

,

,--------------8分

.-------------------12分

18.解:(1)∵,∴ 的對應(yīng)法則不同,值域也不同,因此是不同的函數(shù);

   (2)∵,∴ 的定義域不同,值域也不同,因此是不同的函數(shù);

   (3)∴ 的定義域相同,對應(yīng)法則相同,值域也相同,因此是同一的函數(shù).

19.解:∵,∴ ,以下分討論:------------4分

(i)                    若時,則;------------7分

(ii)                  若時,則.--------11分

綜上所述:實數(shù)的取值范圍是.-------------------12分

20.解:(1)是偶函數(shù).∵ 的定義域是,設(shè)任意,都有,∴是偶函數(shù).-----------5分

 (2)函數(shù)上是增函數(shù).設(shè)任意,且時,

,

,∴ ,,

, 即 ,-----------------11分

故函數(shù)上是增函數(shù).----------------------12分

21.解:(1)∵ ,-----------2分

又  ---------①

 ∴   

  即  ---------②-----------3分

由①、② 得:,-----------5分

(2) ,----------6分

  (i)當(dāng)時,函數(shù)的最小值為;-----8分

(ii)當(dāng)時,函數(shù)的最小值為;---10分

(iii)當(dāng)時,函數(shù)的最小值為.------12分

22.解:(1)依題意有:,即……①,(i)當(dāng)時,方程①無解,∴當(dāng)時,無迭代不動點;(ii)當(dāng)時,方程①有無數(shù)多解,∴當(dāng)時,也無迭代不動點;(iii)當(dāng)時,方程①有唯一解有迭代不動點.-------------6分

(2)設(shè),顯然時,不滿足關(guān)系式,于是,則:

.------8分

……

即:,比較對應(yīng)的系數(shù):解之:,所以.----------14分.


同步練習(xí)冊答案