21.設(shè)雙曲線的左.右焦點(diǎn)分別為F1.F2.P是雙曲線右支上一點(diǎn).△PF1F2的內(nèi)切圓與x軸切于點(diǎn)Q(1.0).且|F1Q| = 4.(1)求雙曲線的方程, 查看更多

 

題目列表(包括答案和解析)

(本小題滿分13分)

設(shè)雙曲線,點(diǎn)A、B分別為雙曲線C實(shí)軸的左端點(diǎn)和虛軸的上端點(diǎn),點(diǎn)、分別為雙曲線C的左、右焦點(diǎn),點(diǎn)M、N是雙曲線C的右支上不同兩點(diǎn),點(diǎn)Q為線段MN的中點(diǎn).已知在雙曲線C上存在一點(diǎn)P,使得

(Ⅰ)求雙曲線C的離心率;

(Ⅱ)設(shè)為正常數(shù),若點(diǎn)Q在直線上,求直線MN在y軸上的截距的取值范圍. 

查看答案和解析>>

(本小題滿分13分)

  如圖,已知橢圓的離心率為,以該橢圓上的點(diǎn)和橢圓的

  左、右焦點(diǎn)為頂點(diǎn)的三角形的周長(zhǎng)為.一等軸雙曲線的頂點(diǎn)是該橢

  圓的焦點(diǎn),設(shè)為該雙曲線上異于頂點(diǎn)的任一點(diǎn),直線與橢圓的交點(diǎn)

  分別 為

   (Ⅰ)求橢圓和雙曲線的標(biāo)準(zhǔn)方程; 

   (Ⅱ)設(shè)直線、的斜率分別為、,證明;

   (Ⅲ)是否存在常數(shù),使得恒成立?

      若存在,求的值;若不存在,請(qǐng)說(shuō)明理由.

                                                             

查看答案和解析>>

(本小題滿分13分)已知焦點(diǎn)在x軸上的雙曲線C的兩條漸近線相交于坐標(biāo)原點(diǎn),且兩條漸近線與以點(diǎn)為圓心,1為半徑的圓相切,又知雙曲線C的一個(gè)焦點(diǎn)與點(diǎn)A關(guān)于直線y=x對(duì)稱.

(1)求雙曲線C的標(biāo)準(zhǔn)方程;

(2)若Q是雙曲線C上的任一點(diǎn),F(xiàn)1、F2分別是雙曲線C的左、右焦點(diǎn),從點(diǎn)F1引∠F1QF2的平分線的垂線,垂足為N,試求點(diǎn)N的軌跡方程.

(3)設(shè)直線y=mx+1與雙曲線C的左支交于A、B兩點(diǎn),另一直線L經(jīng)過(guò)點(diǎn)M(-2,0)和線段AB的中點(diǎn),求直線L在y軸上的截距b的取值范圍

查看答案和解析>>

一、選擇題:B B AD C/  BDBCB

二、填空題:

11、10     12、3     13、21    14、4     15、

三、解答題:

16、【解析】(1)……………………3分

的最小正周期;……………………6分

(2) 將函數(shù)f(x)沿向量得到函數(shù)g(x)= ……9分

當(dāng) 時(shí),函數(shù)g(x)單調(diào)遞減,

故所求區(qū)間為.………………………………………12分

17、解:∵

  ①…………5分

又∵

②……10分

由①②知,即a的取值集合M=[2,3].……………………12分

18、【解析】(1)證明:由已知AE⊥面CDO,,所以CD⊥AE

又CD⊥AD,AD∩AE =A

故CD⊥平面ADE,

故平面ABCD⊥平面ADE;…………………………………………4分

(2)由(1)知CD⊥AD,CD⊥ED,

故∠ADE為二面角A-CD-E的平面角.…………………………………………6分

在Rt△ADE中,sin∠ADE=,∠ADE=

故平面ABCD與平面CDE所成角的平面角的大小為……………………………………8分

(3)凸多面體ABCDE為四棱錐E?ABCD,VE?ABCD = .………………………………12分

 

19、【解析】(1)由b2<a3,得ab<a + 2b.………………………………1分

∵1<a<b,∴ab<3b,則1<a<3.………………………………3分

又a為正整數(shù),∴a = 2.………………………………4分

∵am + 1 = bn,∴2 + (m ? 1)b + 1 = b?2n ? 1

∴b =.………………………………6分

∵b∈N*,2 n ? 1 ? m + 1 = 1.

故b = 3.………………………………8分

(2)∵an = 2 + (n ? 1)?3 = 3n ? 1,b2n + 1 = 3?22n,………………………………10分

∴cn ==

∴當(dāng)n = 2或n = 3時(shí),cn取得最小值,最小值為?12.………………………………13分

20、【解析】(1)依題意,f ′(1) = -1 + 2b + c = 0,f ′(m) = -m2 + 2bm + c = 1.………………………1分

∵-1<b<c,∴-4<-1+ 2b + c<4c,∴c>0.

將c = 1 ? 2b代入-1<b<c,得?1<b<.………………………………3分

將c = 1? 2b代入-m2 + 2bm + c = 1,得 -m2 + 2bm ? 2b = 0.

= 4b2 - 8b≥0,得b≤0或b≥2.………………………………5分

綜上所述,-1<≤0.………………………………6分

(2)由f′(x)<1,得 -x2 + 2bx ? 2b<0.

∴x2 ,………………………………8分

易知為關(guān)于的一次函數(shù).………………………………9分

依題意,不等式g()>0對(duì)-1<≤0恒成立,

得x≤或x≥.………………………………12分

∴k≥,即k的最小值為.………………………………13分

21、【解析】(1)設(shè)△PF1F2的內(nèi)切圓與PF1、PF2的切點(diǎn)分別為D、E,則|PD| = |PE|,|F1D| =|F1Q|,

|F2E| = |F2Q|.

∵|PF1| ? |PF2| = 2a,∴|F1Q| ? |F2Q| = 2a,

∴Q(1,0)為雙曲線的右頂點(diǎn),即a = 1.………………………………3分

又|F1Q| = a + c = 4,∴c = 3,則b2 = c2 ? a2 = 8.

故雙曲線方程為.………………………………5分

(2)設(shè)R(t≠0)、N(x0,y0),由R、B、N三點(diǎn)共線,得,即=,于是解得,則R.………………………………6分

,,

.………………………………8分

又點(diǎn)N在雙曲線上,∴

.………………………………9分

∵x0≥1,∴AN?AR<0,∴∠RAN為鈍角.

又∠RAN與∠MAN互補(bǔ),∴∠MAN為銳角.………………………………11分

故點(diǎn)A在以MN為直徑的圓的外部.………………………………13分

 

 

 

 


同步練習(xí)冊(cè)答案