題目列表(包括答案和解析)
設
(1)求f(x)的周期和最大值;
(2)若x是第三象限角,且,求tanx的值.
函數
(Ⅰ)求函數的周期和最大值;
(Ⅱ)若將函數按向量平移后得到函數,而且當取得最大值3,求.
已知函數
(Ⅰ)求函數f(x)的周期和最大值;
(Ⅱ)已知f(α)=5,求tanα的值.
最小正周期為π的函數(其中a是小于零的常數,是大于零的常數)的圖象按向量,(0<θ<π)平移后得到函數y=f(x)的圖象,而函數y=f(x)在實數集上的值域為[-2,2],且在區(qū)間上是單調遞減函數.
(1)求a、和θ的值;
(2)若角α和β的終邊不共線,f(α)+g(α)=f(β)+g(β),求tan(α+β)的值.
已知 , 且
(1)求的周期;
(2)求最大值和此時相應的的值;
(3)求的單調增區(qū)間;
一、選擇題 CAADD ABDAB CB
二、填空題 . . . .
三、解答題
.
的周期為,最大值為.
令,
得,.
∴的單調減區(qū)間為.
.事件,表示甲以獲勝;表示乙以獲勝,、互斥,
∴
.
事件,表示甲以獲勝;表示甲以獲勝, 、互斥,
∴
延長、交于,則.
連結,并延長交延長線于,則,,
在中,為中位線,,
又,
∴.
∵中,,
∴.
即,又,,
∴,∴,
∴為平面與平面所成二面角的平面角。
又,
∴所求二面角大小為.
.由,,
知,,同理,.
又,
∴構成以為首項,以為公比的等比數列。
∴,即.
.
.,且的圖象經過點和,
∴,為的兩根.
∴
∴
由
解得
∴
要使對,不等式恒成立,
只需即可.
∵,
∴在上單調遞減,在上單調遞增,在上單調遞減.
又,,
∴,
∴,
解得,即為的取值范圍.
.由題意知,橢圓的焦點,,頂點,,
∴雙曲線中,,.
∴的方程為:.
聯立,得,
∴
且,
設,,
則,
∴.
又,即,
∴,
即.
∴,
,
由①②得的范圍為.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com