題目列表(包括答案和解析)
已知函數(shù)。
(Ⅰ)當(dāng)時,利用函數(shù)單調(diào)性的定義判斷并證明的單調(diào)性,并求其值域;
(Ⅱ)若對任意,求實數(shù)a的取值范圍。
已知函數(shù)。(1)判斷函數(shù)的奇偶性;
(2)設(shè),求證:對于任意,都有。
已知函數(shù)。
(1)若函數(shù)是上的增函數(shù),求實數(shù)的取值范圍;
(2)當(dāng)時,若不等式在區(qū)間上恒成立,求實數(shù)的取值范圍;
(3)對于函數(shù)若存在區(qū)間,使時,函數(shù)的值域也是,則稱是上的閉函數(shù)。若函數(shù)是某區(qū)間上的閉函數(shù),試探求應(yīng)滿足的條件。
已知函數(shù)。
(1)求的單調(diào)區(qū)間;
(2)如果在區(qū)間上的最小值為,求實數(shù)以及在該區(qū)間上的最大值.
已知函數(shù)。(1)求的最小正周期、的最大值及此時x的集合;(2) 證明:函數(shù)的圖像關(guān)于直線對稱。
一、選擇題 CAADD ABDAB CB
二、填空題 . . . .
三、解答題
.
的周期為,最大值為.
令,
得,.
∴的單調(diào)減區(qū)間為.
.事件,表示甲以獲勝;表示乙以獲勝,、互斥,
∴
.
事件,表示甲以獲勝;表示甲以獲勝, 、互斥,
∴
延長、交于,則.
連結(jié),并延長交延長線于,則,,
在中,為中位線,,
又,
∴.
∵中,,
∴.
即,又,,
∴,∴,
∴為平面與平面所成二面角的平面角。
又,
∴所求二面角大小為.
.由,,
知,,同理,.
又,
∴構(gòu)成以為首項,以為公比的等比數(shù)列。
∴,即.
.
.,且的圖象經(jīng)過點和,
∴,為的兩根.
∴
∴
由
解得
∴
要使對,不等式恒成立,
只需即可.
∵,
∴在上單調(diào)遞減,在上單調(diào)遞增,在上單調(diào)遞減.
又,,
∴,
∴,
解得,即為的取值范圍.
.由題意知,橢圓的焦點,,頂點,,
∴雙曲線中,,.
∴的方程為:.
聯(lián)立,得,
∴
且,
設(shè),,
則,
∴.
又,即,
∴,
即.
∴,
,
由①②得的范圍為.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com