題目列表(包括答案和解析)
.(本小題滿分10分)選修4-1:幾何證明選講
已知ABC中,AB=AC, D是 ABC外接圓劣弧AC弧上的點(不與點A,C重合),延長BD至E。
(1)求證:AD的延長線平分CDE;
(2)若BAC=30°,ABC中BC邊上的高為2+,
求ABC外接圓的面積。
.(本小題滿分10分)選修4—4:坐標系與參數(shù)方程
在極坐標系中,曲線,過點A(5,α)(α為銳角且)作平行于的直線,且與曲線L分別交于B,C兩點。(1)以極點為原點,極軸為x軸的正半軸,取與極坐標相同單位長度,建立平面直角坐標系,寫出曲線L和直線的普通方程;(2)求|BC|的長。
.(本小題滿分10分)選修4-5:不等式選講
設(shè)函數(shù).
(Ⅰ)求不等式的解集;
(Ⅱ)若,恒成立,求實數(shù)的取值范圍.
.(本小題滿分10分)
已知,求證:.
一、選擇題 CAADD ABDAB CB
二、填空題 . . . .
三、解答題
.
的周期為,最大值為.
令,
得,.
∴的單調(diào)減區(qū)間為.
.事件,表示甲以獲勝;表示乙以獲勝,、互斥,
∴
.
事件,表示甲以獲勝;表示甲以獲勝, 、互斥,
∴
延長、交于,則.
連結(jié),并延長交延長線于,則,,
在中,為中位線,,
又,
∴.
∵中,,
∴.
即,又,,
∴,∴,
∴為平面與平面所成二面角的平面角。
又,
∴所求二面角大小為.
.由,,
知,,同理,.
又,
∴構(gòu)成以為首項,以為公比的等比數(shù)列。
∴,即.
.
.,且的圖象經(jīng)過點和,
∴,為的兩根.
∴
∴
由
解得
∴
要使對,不等式恒成立,
只需即可.
∵,
∴在上單調(diào)遞減,在上單調(diào)遞增,在上單調(diào)遞減.
又,,
∴,
∴,
解得,即為的取值范圍.
.由題意知,橢圓的焦點,,頂點,,
∴雙曲線中,,.
∴的方程為:.
聯(lián)立,得,
∴
且,
設(shè),,
則,
∴.
又,即,
∴,
即.
∴,
,
由①②得的范圍為.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com