題目列表(包括答案和解析)
(14分)已知函數(shù)f(x)=在定義域內(nèi)為奇函數(shù),
且f(1)=2,f()=;
(1)確定函數(shù)的解析式;
(2)用定義證明f(x)在[1,+∞)上是增函數(shù);
|
設(shè)函數(shù).
(Ⅰ)求的單調(diào)區(qū)間和極值;
(Ⅱ)是否存在實數(shù),使得關(guān)于的不等式的解集為?若存在,求的取值范圍;若不存在,試說明理由.
|
如圖,在底面為直角梯形的四棱錐中,平面,,,.
⑴求證:;
⑵求直線與平面所成的角;
⑶設(shè)點在棱上,,
若∥平面,求的值.
|
對于給定數(shù)列,如果存在實常數(shù),使得對于任意都成立,我們稱數(shù)列是 “類數(shù)列”.
(Ⅰ)已知數(shù)列是 “類數(shù)列”且,求它對應(yīng)的實常數(shù)的值;
(Ⅱ)若數(shù)列滿足,,求數(shù)列的通項公式.并判斷是否為“類數(shù)列”,說明理由.
|
等差數(shù)列{}前n項和為,滿足,則下列結(jié)論中正確的是( )
|
一、選擇題 CAADD ABDAB CB
二、填空題 . . . .
三、解答題
.
的周期為,最大值為.
令,
得,.
∴的單調(diào)減區(qū)間為.
.事件,表示甲以獲勝;表示乙以獲勝,、互斥,
∴
.
事件,表示甲以獲勝;表示甲以獲勝, 、互斥,
∴
延長、交于,則.
連結(jié),并延長交延長線于,則,,
在中,為中位線,,
又,
∴.
∵中,,
∴.
即,又,,
∴,∴,
∴為平面與平面所成二面角的平面角。
又,
∴所求二面角大小為.
.由,,
知,,同理,.
又,
∴構(gòu)成以為首項,以為公比的等比數(shù)列。
∴,即.
.
.,且的圖象經(jīng)過點和,
∴,為的兩根.
∴
∴
由
解得
∴
要使對,不等式恒成立,
只需即可.
∵,
∴在上單調(diào)遞減,在上單調(diào)遞增,在上單調(diào)遞減.
又,,
∴,
∴,
解得,即為的取值范圍.
.由題意知,橢圓的焦點,,頂點,,
∴雙曲線中,,.
∴的方程為:.
聯(lián)立,得,
∴
且,
設(shè),,
則,
∴.
又,即,
∴,
即.
∴,
,
由①②得的范圍為.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com