題目列表(包括答案和解析)
π | 2 |
(本題滿分12分) 已知函數(shù).
(Ⅰ) 求f 1(x);
(Ⅱ) 若數(shù)列{an}的首項為a1=1,(nÎN+),求{an}的通項公式an;
(Ⅲ) 設(shè)bn=(32n-8),求數(shù)列{bn}的前項和Tn
(本題滿分12分)已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在x=1處的切線不過第四象限且斜率為3,又坐標(biāo)原點到切線的距離為,若x=時,y=f(x)有極值.
(1)求a、b、c的值;w.w.w.k.s.5.u.c.o.m
(2)求y=f(x)在[-3,1]上的最大值和最小值.
(本題滿分12分) 已知數(shù)列{an}滿足
(Ⅰ)求數(shù)列的前三項:a1,a2,a3;
(Ⅱ)求證:數(shù)列{}為等差數(shù)列. w.w.w.k.s.5.u.c.o.m
(Ⅲ)求數(shù)列{an}的前n項和Sn.
(本題滿分12分) 已知函數(shù)
(Ⅰ)當(dāng)的 單調(diào)區(qū)間;
(Ⅱ)當(dāng)的取值范圍。1.C 2.D 3.A 4.A 5.C 6.D 7.D 8.A 9.C10.D 11.B12.D
13.
14.
15.
16.
17
18.解:
⑴ .
⑵ 函數(shù)在上單調(diào)遞增,
在上單調(diào)遞減.
所以,當(dāng)時,;當(dāng)時,.
故的值域為.
19.解:由題意可知圓的方程為,于是.
時,設(shè),,則由得,
,. 所以的中點坐標(biāo)為.
又由,且,可知直線與直線垂直,即直線的斜率為.
此時直線的方程為,即.
時,同理可得直線的方程為.
故直線的方程為 或 .
20. 解:(Ⅰ)設(shè)這二次函數(shù)f(x)=ax2+bx (a≠0) ,則 f`(x)=2ax+b,由于f`(x)=6x-2,得
a=3 , b=-2, 所以 f(x)=3x2-2x.
又因為點均在函數(shù)的圖像上,所以=3n2-2n.
當(dāng)n≥2時,an=Sn-Sn-1=(3n2-2n)-
=6n-5.
當(dāng)n=1時,a1=S1=3×12-2=6×1-5,所以,an=6n-5 ()
(Ⅱ)由(Ⅰ)
得知==,
故Tn==
=(1-
因此,要使(1-)<()成立的m,必須且僅須滿足≤,即m≥10,所以滿足要求的最小正整數(shù)m為10.
21.解:⑴設(shè),∵不等式的解集為
∴ ……… ① ……… ②
又∵有兩等根,
∴……… ③ 由①②③解得 …………(5分)
又∵,
∴,故.
∴ …………………………(7分)
⑵由①②得,
∴,
……………………(9分)
∵無極值,∴方程
,
解得 …………(12分)
22.(1);
(2)
(3)
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com