(2)若從該小組中任選2個(gè)同學(xué)參加數(shù)學(xué)研究性學(xué)習(xí)活動(dòng).活動(dòng)結(jié)束后.該小組沒有參加過數(shù)學(xué)研究性學(xué)習(xí)活動(dòng)的同學(xué)個(gè)數(shù)是一個(gè)隨機(jī)變量.求隨機(jī)變量的分布列及數(shù)學(xué)期望. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)

某校高一(2)班共有60名同學(xué)參加期末考試,現(xiàn)將其數(shù)學(xué)學(xué)科成績(jī)(均為整數(shù))分成六個(gè)分?jǐn)?shù)段,畫出如下圖所示的部分頻率分布直方圖,請(qǐng)觀察圖形信息,回答下列問題:

  (1)求70~80分?jǐn)?shù)段的學(xué)生人數(shù);

  (2)估計(jì)這次考試中該學(xué)科的優(yōu)分率(80分及以上為優(yōu)分);

  (3)現(xiàn)按照這六個(gè)分?jǐn)?shù)段把學(xué)生分成六組(從低分段到高分段依次為第一組、第二組、…、第六組),為提高本班數(shù)學(xué)整體成績(jī),決定組與組之間進(jìn)行幫扶學(xué)習(xí).若選出的兩組分?jǐn)?shù)之差不小于30分(以分?jǐn)?shù)段中點(diǎn)值為依據(jù),不以具體學(xué)生分?jǐn)?shù)為依據(jù)),則稱這兩組為“最佳組合”,試求任選兩組為“最佳組合”的概率.

查看答案和解析>>

(本小題滿分12分)

某校高一(2)班共有60名同學(xué)參加期末考試,現(xiàn)將其數(shù)學(xué)學(xué)科成績(jī)(均為整數(shù))分成六個(gè)分?jǐn)?shù)段,畫出如下圖所示的部分頻率分布直方圖,請(qǐng)觀察圖形信息,回答下列問題:

  (1)求70~80分?jǐn)?shù)段的學(xué)生人數(shù);

  (2)估計(jì)這次考試中該學(xué)科的優(yōu)分率(80分及以上為優(yōu)分);

  (3)現(xiàn)按照這六個(gè)分?jǐn)?shù)段把學(xué)生分成六組(從低分段到高分段依次為第一組、第二組、…、第六組),為提高本班數(shù)學(xué)整體成績(jī),決定組與組之間進(jìn)行幫扶學(xué)習(xí).若選出的兩組分?jǐn)?shù)之差不小于30分(以分?jǐn)?shù)段中點(diǎn)值為依據(jù),不以具體學(xué)生分?jǐn)?shù)為依據(jù)),則稱這兩組為“最佳組合”,試求任選兩組為“最佳組合”的概率.

查看答案和解析>>

某小組有7個(gè)同學(xué),其中4個(gè)同學(xué)從來沒有參加過數(shù)學(xué)研究性學(xué)習(xí)活動(dòng),3個(gè)同學(xué)曾經(jīng)參加過數(shù)學(xué)研究性學(xué)習(xí)活動(dòng).若從該小組中任選2個(gè)同學(xué)參加數(shù)學(xué)研究性學(xué)習(xí)活動(dòng),活動(dòng)結(jié)束后,該小組沒有參加過數(shù)學(xué)研究性學(xué)習(xí)活動(dòng)的同學(xué)個(gè)數(shù)X是一個(gè)隨機(jī)變量,求隨機(jī)變量X的分布列.

查看答案和解析>>

某小組有7個(gè)同學(xué),其中4個(gè)同學(xué)從來沒有參加過數(shù)學(xué)研究性學(xué)習(xí)活動(dòng),3個(gè)同學(xué)曾經(jīng)參加過數(shù)學(xué)研究性學(xué)習(xí)活動(dòng).

(Ⅰ)現(xiàn)從該小組中任選2個(gè)同學(xué)參加數(shù)學(xué)研究性學(xué)習(xí)活動(dòng),求恰好選到1個(gè)曾經(jīng)參加過數(shù)學(xué)研究性學(xué)習(xí)活動(dòng)的同學(xué)的概率;

(Ⅱ)若從該小組中任選2個(gè)同學(xué)參加數(shù)學(xué)研究性學(xué)習(xí)活動(dòng),活動(dòng)結(jié)束后,該小組沒有參加過數(shù)學(xué)研究性學(xué)習(xí)活動(dòng)的同學(xué)個(gè)數(shù)ξ是一個(gè)隨機(jī)變量,求隨機(jī)變量ξ的分布列及數(shù)學(xué)期望Eξ.

查看答案和解析>>

某小組有7個(gè)同學(xué),其中4個(gè)同學(xué)從來沒有參加過數(shù)學(xué)研究性學(xué)習(xí)活動(dòng),3個(gè)同學(xué)曾經(jīng)參加過數(shù)學(xué)研究性學(xué)習(xí)活動(dòng).

(Ⅰ)現(xiàn)從該小組中任選2個(gè)同學(xué)參加數(shù)學(xué)研究性學(xué)習(xí)活動(dòng),求恰好選到1個(gè)曾經(jīng)參加過數(shù)學(xué)研究性學(xué)習(xí)活動(dòng)的同學(xué)的概率;

(Ⅱ)若從該小組中任選2個(gè)同學(xué)參加數(shù)學(xué)研究性學(xué)習(xí)活動(dòng),活動(dòng)結(jié)束后,該小組沒有參加過數(shù)學(xué)研究性學(xué)習(xí)活動(dòng)的同學(xué)個(gè)數(shù)ξ是一個(gè)隨機(jī)變量,求隨機(jī)變量ξ的分布列及數(shù)學(xué)期望ξ.

查看答案和解析>>

一、填空題:(本大題共14小題,每小題5分,共70分.)

1.       2.1    3.-2     4.      5. (1)(2)

6. 4    7.甲       8.    9.9      10.

11.-2       12.       13.2       14. 2

二、解答題:(本大題共6小題,共90分.)

15.(本小題滿分14分)

解:(1)∵

        …………………………………………5分

(2)∵

…………………………………………7分

         ……………………………………9分

或7                   ………………………………14分

16.(本小題滿分14分)

(1)證明:E、P分別為AC、A′C的中點(diǎn),

        EP∥A′A,又A′A平面AA′B,EP平面AA′B

       ∴即EP∥平面A′FB                  …………………………………………5分

(2) 證明:∵BC⊥AC,EF⊥A′E,EF∥BC

   ∴BC⊥A′E,∴BC⊥平面A′EC

     BC平面A′BC

   ∴平面A′BC⊥平面A′EC             …………………………………………9分

(3)證明:在△A′EC中,P為A′C的中點(diǎn),∴EP⊥A′C,

  在△A′AC中,EP∥A′A,∴A′A⊥A′C

      由(2)知:BC⊥平面A′EC   又A′A平面A′EC

      ∴BC⊥AA′

      ∴A′A⊥平面A′BC                   …………………………………………14分

 

17.(本小題滿分15分)

解:(1)取弦的中點(diǎn)為M,連結(jié)OM

由平面幾何知識(shí),OM=1

                   …………………………………………3分

解得:,               ………………………………………5分

∵直線過F、B ,∴     …………………………………………6分

(2)設(shè)弦的中點(diǎn)為M,連結(jié)OM

              ……………………………………9分

解得                       …………………………………………11分

                    …………………………………………15分

(本題也可以利用特征三角形中的有關(guān)數(shù)據(jù)直接求得)

18.(本小題滿分15分)

(1)延長(zhǎng)BD、CE交于A,則AD=,AE=2

     則S△ADE= S△BDE= S△BCE=

      ∵S△APQ=,∴

      ∴             …………………………………………7分

(2)

          =?

…………………………………………12分

    當(dāng)

,            

…………………………………………15分

19.(本小題滿分16分)

解(1)證:       由  得

上點(diǎn)處的切線為,即

又在上點(diǎn)處切線可計(jì)算得,即

∴直線都相切,且切于同一點(diǎn)()      …………………5分

(2)

      …………………7分

   ∴上遞增

   ∴當(dāng)時(shí)……………10分

(3)

設(shè)上式為 ,假設(shè)取正實(shí)數(shù),則?

當(dāng)時(shí),,遞減;

當(dāng),,遞增. ……………………………………12分

                

    

∴不存在正整數(shù),使得

                  …………………………………………16分

20.(本小題滿分16分)

解:(1),

,對(duì)一切恒成立

的最小值,又 ,

                       …………………………………………4分

(2)這5個(gè)數(shù)中成等比且公比的三數(shù)只能為

只能是

      …………………………8分

,顯然成立             ……………………………………12分

當(dāng)時(shí),,

使不等式成立的自然數(shù)n恰有4個(gè)的正整數(shù)p值為3

                          ……………………………………………16分

 

 

泰州市2008~2009學(xué)年度第二學(xué)期期初聯(lián)考

高三數(shù)學(xué)試題參考答案

附加題部分

21.(選做題)(從A,B,C,D四個(gè)中選做2個(gè),每題10分,共20分.)

A.解:(1)

∴AB=CD                            ……………………………………4分

(2)由相交弦定理得

2×1=(3+OP)(3-OP)

,∴               ……………………………………10分

B.解:依題設(shè)有:     ………………………………………4分

 令,則           …………………………………………5分

           …………………………………………7分

  ………………………………10分

C.解:以有點(diǎn)為原點(diǎn),極軸為軸正半軸,建立平面直角坐標(biāo)系,兩坐標(biāo)系中取相同的長(zhǎng)度單位.(1),由

所以

為圓的直角坐標(biāo)方程.  ……………………………………3分

同理為圓的直角坐標(biāo)方程. ……………………………………6分

(2)由      

相減得過交點(diǎn)的直線的直角坐標(biāo)方程為. …………………………10分

D.證明:(1)因?yàn)?sub>

    所以          …………………………………………4分

    (2)∵   …………………………………………6分

    同理,,……………………………………8分

    三式相加即得……………………………10分

22.(必做題)(本小題滿分10分)

解:(1)記“恰好選到1個(gè)曾經(jīng)參加過數(shù)學(xué)研究性學(xué)習(xí)活動(dòng)的同學(xué)”為事件的, 則其概率為                …………………………………………4分

    答:恰好選到1個(gè)曾經(jīng)參加過數(shù)學(xué)研究性學(xué)習(xí)活動(dòng)的同學(xué)的概率為

(2)隨機(jī)變量

                        ……………………5分

                   …………………………6分

                  ………………………………7分

∴隨機(jī)變量的分布列為

2

3

4

P

 

                    …………………………10分

23.(必做題)(本小題滿分10分)

(1),,

              ……………………………………3分

(2)平面BDD1的一個(gè)法向量為

設(shè)平面BFC1的法向量為

得平面BFC1的一個(gè)法向量

∴所求的余弦值為                     ……………………………………6分

(3)設(shè)

,由

,

當(dāng)時(shí),

當(dāng)時(shí),∴   ……………………………………10分

 

 


同步練習(xí)冊(cè)答案