14.已知奇函數(shù)滿足:1)定義在R上,2)在上單調(diào)遞增,4)對任意一個(gè)小于a的正數(shù)d.存在一個(gè)自變量x0.使.請寫出一個(gè)這樣的函數(shù)的解析式: .請猜想:= . 查看更多

 

題目列表(包括答案和解析)

已知定義在R上的函數(shù)f(x)滿足:①對任意x,y∈R,有f(x+y)=f(x)+f(y).②當(dāng)x>0時(shí),f(x)<0且f(1)=-2.兩個(gè)條件,
(1)求證:f(0)=0;
(2)判斷函數(shù)f(x)的奇偶性;
(3)判斷函數(shù)f(x)的單調(diào)性;
(4)解不等式f(x2-2x)-f(x)≥-8.

查看答案和解析>>

已知定義在R上的函數(shù)f(x)滿足:①對任意x,y∈R,有f(x+y)=f(x)+f(y).②當(dāng)x<0時(shí),f(x)>0且f(1)=-3 兩個(gè)條件,
(1)求證:f(0)=0;
(2)判斷函數(shù)f(x)的奇偶性;
(3)解不等式f(2x-2)-f(x)≥-12.

查看答案和解析>>

已知定義在R上的偶函數(shù)g(x)滿足:當(dāng)x≠0時(shí),xg′(x)<0(其中g(shù)′(x)為函數(shù)g(x)的導(dǎo)函數(shù));定義在R上的奇函數(shù)f(x)滿足:f(x+2)=-f(x),在區(qū)間[0,1]上為單調(diào)遞增函數(shù),且函數(shù)y=f(x)在x=-5處的切線方程為y=-6.若關(guān)于x的不等式g[f(x)]≥g(a2-a+4)對x∈[6,10]恒成立,則a的取值范圍是( 。

查看答案和解析>>

已知定義在R上的函數(shù)f(x)滿足:f(x+y)=f(x)+f(y)+2xy(x+y),(x、y∈R),f(1)=-1.
(1)求f(0)和f(-2)的值;
(2)若f(5)=m,試用m表示f(-5);
(3)試判斷f(x)的奇偶性(要寫出推理過程).

查看答案和解析>>

已知定義在R上的奇函數(shù)f(x)滿足f(x-4)=-f(x),且x∈[0,2]時(shí),f(x)=log2(x+1),甲,乙,丙,丁四位同學(xué)有下列結(jié)論:
甲:f(3)=1;
乙:函數(shù)f(x)在[-6,-2]上是增函數(shù);
丙:函數(shù)f(x)關(guān)于直線x=4對稱;
丁:若m∈(0,1),則關(guān)于x的方程f(x)-m=0在[-8,8]上所有根之和為-8.
其中正確的是( 。

查看答案和解析>>

 

一、選擇題 (每題5分,共50分)

題號

1

2

3

4

5

6

7

8

9

10

小計(jì)

答案

D

D

B

C

C

C

B

C

A

C

 

二、填空題:本大題共4小題,每小題5分,共20.

11. -5  12.7  13.2,1 14.例如:,分段函數(shù)也可(3分);=a/3.(2分)

 

三、解答題:本大題共6小題,共80分.解答應(yīng)寫出文字說明,證明過程或演算步驟.

15.(12分)

已知:函數(shù)().解不等式:.

解:1)當(dāng)時(shí),即解,(2分)

即,(4分)不等式恒成立,即;(6分)

2)當(dāng)時(shí),即解(8分),即,(10分)因?yàn),所以.(11分?/p>

由1)、2)得,原不等式解集為.(12分)

16.(本小題滿分12分)

解:1)

               (2分)            。ǎ捶郑

(6分)

.(8分)

當(dāng)時(shí)(9分),取最大值.(10分)

2)當(dāng)時(shí),,即,(11分)

解得,.(12分)

17.(本小題滿分14分)

1)證明:連接AC.

∵點(diǎn)A是點(diǎn)P在底面AC上的射影,(1分)

∴PA^面AC.(2分)

PC在面AC上的射影是AC.

正方形ABCD中,BD^AC,(3分)

∴BD^PC.(4分)

2)解:連接OS.

∵BD^AC,BD^PC,

又AC、PC是面PAC上的兩相交直線,

∴BD^面PAC. (6分)

∵OSÌ面PAC,

∴BD^OS.(7分)

正方形ABCD的邊長為a,BD=,(8分)

∴DBSD的面積.(9分)

OS的兩個(gè)端點(diǎn)中,O是定點(diǎn),S是動(dòng)點(diǎn).

∴當(dāng)取得最小值時(shí),OS取得最小值,即OS^PC.(10分)

∵PC^BD, OS、BD是面BSD中兩相交直線,

∴PC^面BSD.(12分)

又PCÌ面PCD,∴面BSD^面PCD.(13分)

∴面BSD與面PCD所成二面角的大小為90°.(14分)

18.(本小題滿分14分)

1)解:設(shè)S(x,y),SA斜率=,SB斜率=,(2分)

由題意,得,(4分)

經(jīng)整理,得.(6分,未指出x的范圍,扣1分)

點(diǎn)S的軌跡C為雙曲線(除去兩頂點(diǎn)).(7分)

2)解:假設(shè)C上存在這樣的兩點(diǎn)P(x1,y1)和Q(x2,y2),則PQ直線斜率為-1,

且P、Q的中點(diǎn)在直線x-y-1=0上.

設(shè)PQ直線方程為:y=-x+b,

由整理得.(9分)

其中時(shí),方程只有一個(gè)解,與假設(shè)不符.

當(dāng)時(shí),D>0,D=

=,

所以,(*)(10分)

又,所以,代入y=-x+b,

得,

因?yàn)椋、Q中點(diǎn)在直線x-y-1=0上,

所以有:,整理得,(**)(11分)

解(*)和(**),得-1<b<0,0<t<1,(13分)

經(jīng)檢驗(yàn),得:當(dāng)t。ǎ埃保┲腥我庖粋(gè)值時(shí),曲線C上均存在兩點(diǎn)關(guān)于直線x-y-1=0對稱.(14分)

19.(本小題滿分14分)  

解:甲選手勝乙選手的局?jǐn)?shù)作為隨機(jī)變量ξ,它的取值共有0、1、2、3四個(gè)值.

1)當(dāng)ξ=0時(shí),本場比賽共三局,甲選手連負(fù)三局,

P(ξ=0)=(1-0.6)3=0.064;(2分)

2)當(dāng)ξ=1時(shí),本場比賽共四局,甲選手負(fù)第四局,且前三局中,甲勝一局,

P(ξ=1)=;(4分)

3)當(dāng)ξ=2時(shí),本場比賽共五局,甲選手負(fù)第五局,且前四局中,甲勝二局,

P(ξ=2)=; (6分)

4)當(dāng)ξ=3時(shí),本場比賽共三局、或四局、或五局.其中共賽三局時(shí),甲連勝這三局;共賽四局時(shí),第四局甲勝,且前三局中甲勝兩局;共賽五局時(shí),第五局甲勝,且前四局中甲勝兩局;

P(ξ=3)==0.68256(8分)

ξ的概率分布列為:

ξ

0

1

2

3

P

0.064

0.1152

0.13824

0.68256

(10分)

Eξ=0´P(ξ=0)+ 1´ P(ξ=1)+2´ P(ξ=2)+3´ P(ξ=3)    (12分)

=0´0.064+1´0.1152+2´0.13824+3´0.68256=2.43926»2.4394.(14分)

 

20.(本小題滿分14分)

解:(1)由題意知,(1分)

得,(3分)∴ (5分)                       

(2)(6分)

     (8分)                  

(3)設(shè)存在S,P,r,(9分)

          (10分)                        

即 

 (*)   (12分)        

因?yàn)閟、p、r為偶數(shù)

1+2,(*)式產(chǎn)生矛盾.所以這樣的三項(xiàng)不存在.(14分)

       以上答案及評分標(biāo)準(zhǔn)僅供參考,如有其它解法請參照給分.

 


同步練習(xí)冊答案