以原點為極點.以軸正半軸為極軸建立極坐標系.則圓的圓心極坐標為 . 查看更多

 

題目列表(包括答案和解析)

以原點為極點,以軸的正半軸為極軸建立極坐標系,已知曲線,過點的直線的參數(shù)方程為,設(shè)直線與曲線分別交于;

(1)寫出曲線和直線的普通方程;

(2)若成等比數(shù)列,求的值.

 

查看答案和解析>>

以原點為極點,以軸的正半軸為極軸建立極坐標系,已知曲線,過點的直線的參數(shù)方程為,設(shè)直線與曲線分別交于;

(1)寫出曲線和直線的普通方程;

(2)若成等比數(shù)列,求的值.

 

查看答案和解析>>

以原點為極點,以軸的正半軸為極軸建立極坐標系,已知曲線,過點的直線的參數(shù)方程為,設(shè)直線與曲線分別交于;
(1)寫出曲線和直線的普通方程;
(2)若成等比數(shù)列,求的值.

查看答案和解析>>

以原點為極點,以軸的正半軸為極軸建立極坐標系,已知曲線,過點的直線的參數(shù)方程為,設(shè)直線與曲線分別交于;
(1)寫出曲線和直線的普通方程;
(2)若成等比數(shù)列,求的值.

查看答案和解析>>

以坐標原點為極點,x軸正半軸為極軸建立極坐標系,曲線C1的極坐標方程為ρsinm=0,曲線C2的參數(shù)方程為(0<α<π),若曲線C1C2有兩個不同的交點,則實數(shù)m的取值范圍是____________.

查看答案和解析>>

說明:1.參考答案與評分標準指出了每道題要考查的主要知識和能力,并給出了一種或幾種解法供參考,如果考生的解法與參考答案不同,可根據(jù)試題主要考查的知識點和能力比照評分標準給以相應(yīng)的分數(shù).

      2.對解答題中的計算題,當(dāng)考生的解答在某一步出現(xiàn)錯誤時,如果后繼部分的解答未改變該題的內(nèi)容和難度,可視影響的程度決定后繼部分的得分,但所給分數(shù)不得超過該部分正確解答應(yīng)得分數(shù)的一半;如果后繼部分的解答有較嚴重的錯誤,就不再給分.

      3.解答右端所注分數(shù),表示考生正確做到這一步應(yīng)得的累加分數(shù).

4.只給整數(shù)分數(shù),選擇題和填空題不給中間分.

一、選擇題:本大題主要考查基本知識和基本運算.共10小題,每小題5分,滿分50分.

   

題號

1

2

3

4

5

6

7

8

答案

C

A

B

A

B

C

C

D

 

二、填空題:本大題主要考查基本知識和基本運算.本大題共7小題,考生作答6小題,每小題5分,滿分30分.其中14~15題是選做題,考生只能選做一題.

9.    10.        11.         12.  

13.           14.     15.2

說明:第14題答案可以有多種形式,如可答Z等, 均給滿分.

三、解答題:本大題共6小題,滿分80分.解答須寫出文字說明、證明過程和演算步驟.

16.(本小題滿分12分)          

解:(1)∵

                                                    ……2分

                                              ……4分     

             .                                             ……6分

.                                                     ……8分

(2) 當(dāng)時, 取得最大值, 其值為2 .                    ……10分

此時,即Z.                      ……12分

 

17.(本小題滿分12分)

解:(1)設(shè)“這箱產(chǎn)品被用戶接收”為事件,.        ……3分   

即這箱產(chǎn)品被用戶接收的概率為.                             ……4分    

(2)的可能取值為1,2,3.                                       ……5分   

=,                                                

=,                                            

=,                                     ……8分     

的概率分布列為:

1

2

3

……10分

=.                          ……12分

 

18.(本小題滿分14分)

解:(1)∵點A、D分別是、的中點,

.                                     ……2分                   

∴∠=90º.

.

,                                                   

,

⊥平面.                                         ……4分     

平面,

.                                             ……6分      

(2)法1:取的中點,連結(jié)、

,

.                                      

,

平面.

平面,

.                      ……8分

平面.

平面,

.

∴∠是二面角的平面角.                            ……10分 

在Rt△中, ,

在Rt△中,

.                             ……12分          

∴ 二面角的平面角的余弦值是.                ……14分         

 

法2:建立如圖所示的空間直角坐標系

(-1,0,0),(-2,1,0),(0,0,1).

=(-1,1,0),=(1,0,1),      ……8分

設(shè)平面的法向量為=(x,y,z),則:

,                     ……10分

,得

=(1,1,-1).

顯然,是平面的一個法向量,=().  ……12分            

∴cos<,>=. 

∴二面角的平面角的余弦值是.                 ……14分        

 

 

 

 

19. (本小題滿分14分)

解:(1)依題意知,               ……2分                                       

      ∵,

.                      ……4分                 

∴所求橢圓的方程為.                       ……6分              

(2)∵ 點關(guān)于直線的對稱點為,

                          ……8分                  

解得:,.                 ……10分                

 

.                                     ……12分            

∵ 點在橢圓:上,

, 則.

的取值范圍為.                ……14分                 

20.(本小題滿分14分)

解:(1)數(shù)表中前行共有個數(shù),

即第i行的第一個數(shù)是,                         ……2分             

         ∴

=2010,

∴ i=11.                                              ……4分       

,    

解得.                          ……6分            

(2)∵

.                                    ……7分     

.                   

當(dāng)時, , 則;

當(dāng)時, , 則;

當(dāng)時, , 則;

當(dāng)時, 猜想: .                         ……11分        

下面用數(shù)學(xué)歸納法證明猜想正確.

① 當(dāng)時,, 即成立;

② 假設(shè)當(dāng)時, 猜想成立, 即,

  則,

,

.

即當(dāng)時,猜想也正確.

由①、②得當(dāng)時, 成立.

當(dāng)時,.                             ……13分              

綜上所述, 當(dāng)時, ; 當(dāng)時,.  ……14分       

另法( 證明當(dāng)時, 可用下面的方法):

當(dāng)時, C + C + C+ C

                    

                    

                     .

            

 

21. (本小題滿分14分)

解:(1)當(dāng)時,,

.                    

       令=0, 得 .                    ……2分                                  

當(dāng)時,, 則上單調(diào)遞增;

當(dāng)時,, 則上單調(diào)遞減;

當(dāng)時,, 上單調(diào)遞增.       ……4分             

∴ 當(dāng)時, 取得極大值為;

當(dāng)時, 取得極小值為.       ……6分

(2) ∵ =

∴△= =  .                             

① 若a≥1,則△≤0,                           ……7分              

≥0在R上恒成立,

∴ f(x)在R上單調(diào)遞增 .                                                    

∵f(0),                  

∴當(dāng)a≥1時,函數(shù)f(x)的圖象與x軸有且只有一個交點.     ……9分  

② 若a<1,則△>0,

= 0有兩個不相等的實數(shù)根,不妨設(shè)為x1,x2,(x1<x2).

∴x1+x2 = 2,x1x2 = a.  

當(dāng)變化時,的取值情況如下表:                       

x

x1

(x1,x2

x2

+

0

0

+

f(x)

極大值

 

極小值

 

                                      ……11分

,

.


同步練習(xí)冊答案