四位同學在研究函數 f 時.分別給出下面四個結論: ① 函數 f (x) 的值域為 (-1 , 1] ② 若x1≠x2.則一定有f (x1)≠f (x2) ③ 若規(guī)定 f1.fn+1(x) = f [ fn(x)].則 fn(x) = 對任意 n∈N* 恒成立. ④對于定義域上的任意x都有你認為上述四個結論中正確的序號是 .三臺中學2009年高三下期四月考理科數學試題班級 學號 姓名 總分 題號123456789101112答案 二.填空題:13. ,14. ,15. ,16. 查看更多

 

題目列表(包括答案和解析)

四位同學在研究函數f(x)=
x
1+|x|
(x∈R)
時,分別給出下面四個結論:
①函數 f(x)的圖象關于y軸對稱;       
②函數f(x)的值域為 (-1,1);
③若x1≠x2,則一定有f(x1)≠f(x2);
④若規(guī)定f1(x)=f(x),fn+1(x)=f[fn(x)],則 fn(x)=
x
1+n|x|
對任意n∈N*恒成立.  
你認為上述四個結論中正確的有
②③④
②③④

查看答案和解析>>

四位同學在研究函數f(x)=
x
1+|x|
(x∈R)
時,分別給出下面四個結論:
①函數 f(x)的圖象關于y軸對稱;       
②函數f(x)的值域為 (-1,1);
③若x1≠x2,則一定有f(x1)≠f(x2);
④若規(guī)定f1(x)=f(x),fn+1(x)=f[fn(x)],則 fn(x)=
x
1+n|x|
對任意n∈N*恒成立.  
你認為上述四個結論中正確的有______.

查看答案和解析>>

四位同學在研究函數(x∈R)時,分別給出下面四個結論:
①函數f(x)的值域為(-1,1);
②若x1,x2∈R且x1<x2<0,則一定有;
③若x1,x2∈R且x1<x2,則一定有
④若集合M=[a,b],N={y|y=f(x),x∈M},則使M=N成立的有序實數對(a,b)只有一個.
則上述四個結論中正確的是( )
A.①②
B.①③
C.①④
D.②④

查看答案和解析>>

四位同學在研究函數數學公式(x∈R)時,分別給出下面四個結論:
①函數f(x)的值域為(-1,1);
②若x1,x2∈R且x1<x2<0,則一定有數學公式
③若x1,x2∈R且x1<x2,則一定有數學公式;
④若集合M=[a,b],N={y|y=f(x),x∈M},則使M=N成立的有序實數對(a,b)只有一個.
則上述四個結論中正確的是


  1. A.
    ①②
  2. B.
    ①③
  3. C.
    ①④
  4. D.
    ②④

查看答案和解析>>

四位同學在研究函數f(x)=(x∈R)時,分別給出下面四個結論:

①函數f(x)的圖象關于y軸對稱;

②函數f(x)的值域為(-1,1);

③若x1≠x2,則一定有f(x1)≠f(x2);

④若規(guī)定f1(x)=f(x),fn+1(x)=f[fn(x)],則fn(x)=對任意n∈N*恒成立.你認為上述四個結論中正確的有________

查看答案和解析>>

一、選擇題

    <xmp id="y82go"><button id="y82go"></button>
    • <strong id="y82go"><sup id="y82go"></sup></strong>

            20080527

            二、填空題  13.4 ;  14.(-∞,-2]∪[1,+∞); 15. 5  ;   16. ② ③

            17.解:(1)由正弦定理得,…

               ,,因此!6分

            (2)的面積,

            ,所以由余弦定理得

            !12分

            18.18.解:填湖面積   填湖及排水設備費    水面經濟收益   填湖造地后收益

                    (畝)      (元)                       

            (1)收益不小于支出的條件可以表示為

            所以,!3分

            顯然時,此時所填面積的最大值為畝。…………7分

            (2)設該地現在水面m畝,今年填湖造地y畝,

            ,…………9分

            ,所以

            因此今年填湖造地面積最多只能占現有水面的!12分

            19.(1)∵∠DFH就是二面角G-EF-D的平面角…2分

            在Rt△HDF中,DF= PD=1,DH= AD=1   ………4分

            ∴∠DFH=45°,

            即二面角G-EF-D的大小為45°.             …………6分

            (2)當點Q是線段PB的中點時,有PQ⊥平面ADQ.…………7分

            證明如下:
            ∵E是PC中點,∴EQ∥BC,又AD∥BC,故EQ∥AD,從而A、D、E、Q四點共面
            在Rt△PDC中,PD=DC,E為PC中點
            ∴PC⊥DE,又∵PD⊥平面ABCD              …………10分
            ∴AD⊥PC,又AD∩DE=D
            ∴PC⊥平面ADEQ,即PC⊥平面ADQ.          …………12分
            解法二:(1)建立如圖所示空間直角坐標系,設平面GEF的一個法向量為n=(x,y,z),則
              取n=(1,0,1)      …………4分
            又平面EFD的法向量為m=(1,0,0)
            ∴cos<m,n> =                 …………6分
            ∴<m,n>=45°                            …………7分
            (2)設=λ(0<λ<1)
            則=+=(-2+2λ,2λ,2-2λ)       …………9分
            ∵AQ⊥PC ó ?=0  ó  2×2λ-2(2-2λ)=0
            ó  λ=                                                …………11分
            又AD⊥PC,∴PC⊥平面ADQ  ó λ=

            ó  點Q是線段PB的中點.                               …………12分
            20。解: 設,不妨設

            直線的方程:,

            化簡得 .又圓心的距離為1,

             ,           …5分

            ,

            易知,上式化簡得

            同理有.         ………8分

            所以,,則

            是拋物線上的點,有,則

            ,.                    ………10分

            所以

            時,上式取等號,此時

            因此的最小值為8.                                    …12分

            21.(Ⅰ)當.

                          …………………3分

            (II)     因為在(0,1]上是增函數,

            所以在(0,1]上恒成立,即在(0,1]上恒成立,

             令,………6分

            在(0,1]上是單調增函數,所以

            所以.                                          …………………8分

            (Ⅲ)①當時,由(II)知在(0,1]上是增函數,

            所以,解得,與矛盾.…………………10分

            ②當時,令,,

            時,是增函數,

            時,,是減函數.

            所以,即,

            解得,

            綜上,存在,使得當時,f(x)有最大值-6.………………12分

            22.解:(Ⅰ),,

            ,是以為首項,為公比的等比數列.

            ,. ………4分

            (Ⅱ)由(Ⅰ)知

            ,原不等式成立. ………8分

            (Ⅲ)由(Ⅱ)知,對任意的,有

            . ………10分

            , ………12分

            原不等式成立.    ………14分

             


            同步練習冊答案