題目列表(包括答案和解析)
已知函數(shù)f(x)=ex-ax,其中a>0.
(1)若對(duì)一切x∈R,f(x) 1恒成立,求a的取值集合;
(2)在函數(shù)f(x)的圖像上去定點(diǎn)A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.
【解析】解:令.
當(dāng)時(shí)單調(diào)遞減;當(dāng)時(shí)單調(diào)遞增,故當(dāng)時(shí),取最小值
于是對(duì)一切恒成立,當(dāng)且僅當(dāng). 、
令則
當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減.
故當(dāng)時(shí),取最大值.因此,當(dāng)且僅當(dāng)時(shí),①式成立.
綜上所述,的取值集合為.
(Ⅱ)由題意知,令則
令,則.當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增.故當(dāng),即
從而,又
所以因?yàn)楹瘮?shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使即成立.
【點(diǎn)評(píng)】本題考查利用導(dǎo)函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問題等,考查運(yùn)算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學(xué)方法.第一問利用導(dǎo)函數(shù)法求出取最小值對(duì)一切x∈R,f(x) 1恒成立轉(zhuǎn)化為從而得出求a的取值集合;第二問在假設(shè)存在的情況下進(jìn)行推理,然后把問題歸結(jié)為一個(gè)方程是否存在解的問題,通過構(gòu)造函數(shù),研究這個(gè)函數(shù)的性質(zhì)進(jìn)行分析判斷.
已知函數(shù).()
(1)若在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍;
(2)若在區(qū)間上,函數(shù)的圖象恒在曲線下方,求的取值范圍.
【解析】第一問中,首先利用在區(qū)間上單調(diào)遞增,則在區(qū)間上恒成立,然后分離參數(shù)法得到,進(jìn)而得到范圍;第二問中,在區(qū)間上,函數(shù)的圖象恒在曲線下方等價(jià)于在區(qū)間上恒成立.然后求解得到。
解:(1)在區(qū)間上單調(diào)遞增,
則在區(qū)間上恒成立. …………3分
即,而當(dāng)時(shí),,故. …………5分
所以. …………6分
(2)令,定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061918574873515193/SYS201206191859562664899842_ST.files/image016.png">.
在區(qū)間上,函數(shù)的圖象恒在曲線下方等價(jià)于在區(qū)間上恒成立.
∵ …………9分
① 若,令,得極值點(diǎn),,
當(dāng),即時(shí),在(,+∞)上有,此時(shí)在區(qū)間上是增函數(shù),并且在該區(qū)間上有,不合題意;
當(dāng),即時(shí),同理可知,在區(qū)間上遞增,
有,也不合題意; …………11分
② 若,則有,此時(shí)在區(qū)間上恒有,從而在區(qū)間上是減函數(shù);
要使在此區(qū)間上恒成立,只須滿足,
由此求得的范圍是. …………13分
綜合①②可知,當(dāng)時(shí),函數(shù)的圖象恒在直線下方.
如圖,,,…,,…是曲線上的點(diǎn),,,…,,…是軸正半軸上的點(diǎn),且,,…,,… 均為斜邊在軸上的等腰直角三角形(為坐標(biāo)原點(diǎn)).
(1)寫出、和之間的等量關(guān)系,以及、和之間的等量關(guān)系;
(2)求證:();
(3)設(shè),對(duì)所有,恒成立,求實(shí)數(shù)的取值范圍.
【解析】第一問利用有,得到
第二問證明:①當(dāng)時(shí),可求得,命題成立;②假設(shè)當(dāng)時(shí),命題成立,即有則當(dāng)時(shí),由歸納假設(shè)及,
得
第三問
.………………………2分
因?yàn)楹瘮?shù)在區(qū)間上單調(diào)遞增,所以當(dāng)時(shí),最大為,即
解:(1)依題意,有,,………………4分
(2)證明:①當(dāng)時(shí),可求得,命題成立; ……………2分
②假設(shè)當(dāng)時(shí),命題成立,即有,……………………1分
則當(dāng)時(shí),由歸納假設(shè)及,
得.
即
解得(不合題意,舍去)
即當(dāng)時(shí),命題成立. …………………………………………4分
綜上所述,對(duì)所有,. ……………………………1分
(3)
.………………………2分
因?yàn)楹瘮?shù)在區(qū)間上單調(diào)遞增,所以當(dāng)時(shí),最大為,即
.……………2分
由題意,有. 所以,
已知點(diǎn)為圓上的動(dòng)點(diǎn),且不在軸上,軸,垂足為,線段中點(diǎn)的軌跡為曲線,過定點(diǎn)任作一條與軸不垂直的直線,它與曲線交于、兩點(diǎn)。
(I)求曲線的方程;
(II)試證明:在軸上存在定點(diǎn),使得總能被軸平分
【解析】第一問中設(shè)為曲線上的任意一點(diǎn),則點(diǎn)在圓上,
∴,曲線的方程為
第二問中,設(shè)點(diǎn)的坐標(biāo)為,直線的方程為, ………………3分
代入曲線的方程,可得
∵,∴
確定結(jié)論直線與曲線總有兩個(gè)公共點(diǎn).
然后設(shè)點(diǎn),的坐標(biāo)分別, ,則,
要使被軸平分,只要得到。
(1)設(shè)為曲線上的任意一點(diǎn),則點(diǎn)在圓上,
∴,曲線的方程為. ………………2分
(2)設(shè)點(diǎn)的坐標(biāo)為,直線的方程為, ………………3分
代入曲線的方程,可得 ,……5分
∵,∴,
∴直線與曲線總有兩個(gè)公共點(diǎn).(也可根據(jù)點(diǎn)M在橢圓的內(nèi)部得到此結(jié)論)
………………6分
設(shè)點(diǎn),的坐標(biāo)分別, ,則,
要使被軸平分,只要, ………………9分
即,, ………………10分
也就是,,
即,即只要 ………………12分
當(dāng)時(shí),(*)對(duì)任意的s都成立,從而總能被軸平分.
所以在x軸上存在定點(diǎn),使得總能被軸平分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com