(Ⅲ)依題意兩兩垂直.分別以直線為軸.建立空間直角坐標(biāo)系.如圖 查看更多

 

題目列表(包括答案和解析)

在四棱錐中,平面,底面為矩形,.

(Ⅰ)當(dāng)時(shí),求證:;

(Ⅱ)若邊上有且只有一個(gè)點(diǎn),使得,求此時(shí)二面角的余弦值.

【解析】第一位女利用線面垂直的判定定理和性質(zhì)定理得到。當(dāng)a=1時(shí),底面ABCD為正方形,

又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912265168707359/SYS201207091227226245550949_ST.files/image014.png">,………………2分

,得證。

第二問,建立空間直角坐標(biāo)系,則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分

設(shè)BQ=m,則Q(1,m,0)(0《m《a》

要使,只要

所以,即………6分

由此可知時(shí),存在點(diǎn)Q使得

當(dāng)且僅當(dāng)m=a-m,即m=a/2時(shí),BC邊上有且只有一個(gè)點(diǎn)Q,使得

由此知道a=2,  設(shè)平面POQ的法向量為

,所以    平面PAD的法向量

的大小與二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值為

解:(Ⅰ)當(dāng)時(shí),底面ABCD為正方形,

又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912265168707359/SYS201207091227226245550949_ST.files/image014.png">,………………3分

(Ⅱ) 因?yàn)锳B,AD,AP兩兩垂直,分別以它們所在直線為X軸、Y軸、Z軸建立坐標(biāo)系,如圖所示,

則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分

設(shè)BQ=m,則Q(1,m,0)(0《m《a》要使,只要

所以,即………6分

由此可知時(shí),存在點(diǎn)Q使得

當(dāng)且僅當(dāng)m=a-m,即m=a/2時(shí),BC邊上有且只有一個(gè)點(diǎn)Q,使得由此知道a=2,

設(shè)平面POQ的法向量為

,所以    平面PAD的法向量

的大小與二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值為

 

查看答案和解析>>

(本題滿分12分)閱讀下列材料,解決數(shù)學(xué)問題.圓錐曲線具有非常漂亮的光學(xué)性質(zhì),被人們廣泛地應(yīng)用于各種設(shè)計(jì)之中,比如橢圓鏡面用來制作電影放映機(jī)的聚光燈,拋物面用來制作探照燈等,它們的截面分別是橢圓和拋物線.雙曲線也具有非常好的光學(xué)性質(zhì),從雙曲線的一個(gè)焦點(diǎn)發(fā)出的光線,經(jīng)過雙曲線反射后,反射光線是發(fā)散的,它們好像是從另一個(gè)焦點(diǎn)射出的一樣,如圖(1)所示.反比例函數(shù)的圖像是以直線為軸,以坐標(biāo)軸為漸近線的等軸雙曲線,記作C.

(Ⅰ)求曲線C的離心率及焦點(diǎn)坐標(biāo);

(Ⅱ)如圖(2),從曲線C的焦點(diǎn)F處發(fā)出的光線經(jīng)雙曲線反射后得到的反射光線與入射光線垂直,求入射光線的方程.

(1)           (2) 

 

查看答案和解析>>

(本題滿分12分)閱讀下列材料,解決數(shù)學(xué)問題.

圓錐曲線具有非常漂亮的光學(xué)性質(zhì),被人們廣泛地應(yīng)用于各種設(shè)計(jì)之中,比如橢圓鏡面用來制作電影放映機(jī)的聚光燈,拋物面用來制作探照燈等,它們的截面分別是橢圓和拋物線.雙曲線也具有非常好的光學(xué)性質(zhì),從雙曲線的一個(gè)焦點(diǎn)發(fā)出的光線,經(jīng)過雙曲線反射后,反射光線是發(fā)散的,它們好像是從另一個(gè)焦點(diǎn)射出的一樣,如右上圖所示.

反比例函數(shù)的圖像是以直線為軸,以坐標(biāo)軸為漸近線的等軸雙曲線,記作C.

(Ⅰ)求曲線C的離心率及焦點(diǎn)坐標(biāo);

(Ⅱ)如右下圖,從曲線C的焦點(diǎn)F處發(fā)出的光線經(jīng)雙曲線反射后得到的反射光線與入射光線垂直,求入射光線的方程.

查看答案和解析>>

(本題滿分12分)閱讀下列材料,解決數(shù)學(xué)問題.圓錐曲線具有非常漂亮的光學(xué)性質(zhì),被人們廣泛地應(yīng)用于各種設(shè)計(jì)之中,比如橢圓鏡面用來制作電影放映機(jī)的聚光燈,拋物面用來制作探照燈等,它們的截面分別是橢圓和拋物線.雙曲線也具有非常好的光學(xué)性質(zhì),從雙曲線的一個(gè)焦點(diǎn)發(fā)出的光線,經(jīng)過雙曲線反射后,反射光線是發(fā)散的,它們好像是從另一個(gè)焦點(diǎn)射出的一樣,如圖(1)所示.反比例函數(shù)的圖像是以直線為軸,以坐標(biāo)軸為漸近線的等軸雙曲線,記作C.
(Ⅰ)求曲線C的離心率及焦點(diǎn)坐標(biāo);
(Ⅱ)如圖(2),從曲線C的焦點(diǎn)F處發(fā)出的光線經(jīng)雙曲線反射后得到的反射光線與入射光線垂直,求入射光線的方程.
(1)          (2) 

查看答案和解析>>

已知球面的三個(gè)大圓所在平面兩兩垂直,則以三個(gè)大圓的交點(diǎn)為頂點(diǎn)的八面體的體積與球體積之比是( 。
A、1:πB、1:2πC、2:πD、4:3π

查看答案和解析>>


同步練習(xí)冊(cè)答案