已知分段函數(shù).求函數(shù)的函數(shù)值的程框圖如圖.有兩個判斷框內(nèi)要填寫的內(nèi)容分別是 查看更多

 

題目列表(包括答案和解析)

已知分段函數(shù),請設(shè)計一個求函數(shù)值的算法,并完成程序框圖.

查看答案和解析>>

已知分段函數(shù)y=
2x+1x≤-6
x2-9-6<x<3
2xx≥3

(1)完成求函數(shù)值的程序框圖;
(2)若輸出的y值為16,求輸入的x的值.

查看答案和解析>>

已知分段函數(shù)y=要求輸入自變量x的值,輸出函數(shù)值y,用基本語句描述這個算法.

查看答案和解析>>

已知分段函數(shù)y=畫出求該函數(shù)值的算法框圖,并用算法語句描述.

查看答案和解析>>

已知函數(shù)f(x)=lnx,g(x)=
12
ax2+bx,a≠0.
(Ⅰ)若b=2,且h(x)=f(x)-g(x)存在單調(diào)遞減區(qū)間,求a的取值范圍;
(Ⅱ)設(shè)函數(shù)f(x)的圖象C1與函數(shù)g(x)圖象C2交于點P、Q,過線段PQ的中點作x軸的垂線分別交C1,C2于點M、N,證明C1在點M處的切線與C2在點N處的切線不平行.

查看答案和解析>>

一、選擇題:1、A2、A3、B4、B5、C6、D7、B8、D9、D10、A

二、填空題:11、1000   12、   13、三條側(cè)棱、、兩兩互相垂直的三棱錐中,,則此三棱錐的外接球半徑為   14、(1)8  (2)

三、解答題:

15、(1)∵,  ∴,  ………(2分)

,( 4分),………(6分)

所求解集為     ………(8分)

(2)∵     

          ………(10分) 

………(12分)  

  

的周期為,

遞增區(qū)間

16、解:解析:由題意可知,這個幾何體是直三棱柱,且,,

(1)連結(jié),。

由直三棱柱的性質(zhì)得平面,所以,則

四邊形為矩形.

由矩形性質(zhì)得,的中點

中,由中位線性質(zhì),得

平面,平面

所以平面。    (6分)

(2)因為平面平面,所以

在正方形:中,

又因為,所以平面

,得平面.    (14分)

17、解:(1)由題意知

,可得    (6分)

(2)當(dāng)時,∵

,兩式相減得

  為常數(shù),

,,…,成等比數(shù)列。

其中,∴           ………(12分)

18、解:設(shè)二次函數(shù),則,解得

代入上式:

對于,由已知,得:,解得

代入:

而4月份的實際產(chǎn)量為萬件,相比之下,1.35比1.3更接近1.37.

∴選用函數(shù)作模型函數(shù)較好.

19、(1)    ………(2分)

(1)由題意;,解得

∴所求的解析式為 ………(6分)

(2)由(1)可得

,得 , ………(8分)

∴當(dāng)時, ,當(dāng)時, ,當(dāng)時,

因此,當(dāng)時, 有極大值,………(8分)

當(dāng)時, 有極小值,………(10分)

∴函數(shù)的圖象大致如圖。

由圖可知:!14分)

20、解:(1)直線軸垂直時與拋物線交于一點,不滿足題意.

設(shè)直線的方程為,代入得,

 設(shè)、、

,且,即.

,的中點.

.由軸右側(cè)得.

軌跡的方程為.

(2)∵曲線的方程為。

  ∴

,

,

,∴

的取值范圍為

 

 

 


同步練習(xí)冊答案