查看更多

 

題目列表(包括答案和解析)

(本小題滿分13分)  已知二項式 

(1)求其展開式中第四項的二項式系數(shù);

(2)求其展開式中第四項的系數(shù) 。

查看答案和解析>>

(本小題滿分13分)某廠用甲、乙兩種產(chǎn)品,已知生產(chǎn)1噸A產(chǎn)品,1噸B產(chǎn)品分別需要的甲乙原料數(shù)、可獲得的利潤及該廠現(xiàn)有原料數(shù)如表:

產(chǎn)品

所需原料

A產(chǎn)品(t)

B產(chǎn)品(t)

現(xiàn)有原料(t)

甲(t)

2

1

14

乙(t)

1

3

18

利潤(萬元)

5

3

 

(1)在現(xiàn)有原料下,A、B產(chǎn)品應(yīng)各生產(chǎn)多少才能使利潤最大?

(2)如果1噸B產(chǎn)品的利潤增加到20萬元,原來的最優(yōu)解為何改變?

(3)如果1噸B產(chǎn)品的利潤減少1萬元,原來的最優(yōu)解為何改變?

(4)1噸B產(chǎn)品的利潤在什么范圍,原最優(yōu)解才不會改變?

查看答案和解析>>

 (本小題滿分13分)

某市物價局調(diào)查了某種治療H1N1流感的常規(guī)藥品在2009年每個月的批發(fā)價格和該藥品在藥店的銷售價格,調(diào)查發(fā)現(xiàn),該藥品的批發(fā)價格按月份以12元/盒為中心價隨某一正弦曲線上下波動,且3月份的批發(fā)價格最高為14元/盒,7月份的批發(fā)價格最低為10元/盒.該藥品在藥店的銷售價格按月份以14元/盒為中心價隨另一正弦曲線上下波動,且5月份的銷售價格最高為16元/盒,9月份的銷售價格最低為12元/盒.

(Ⅰ)求該藥品每盒的批發(fā)價格f(x)和銷售價格g(x)關(guān)于月份的函數(shù)解析式;

(Ⅱ)假設(shè)某藥店每月初都購進這種藥品p 盒,且當(dāng)月售完,求該藥店在2009年哪些月份是盈利的?說明你的理由.

查看答案和解析>>

(本小題滿分13分) 根據(jù)長沙市建設(shè)大河西的規(guī)劃,市旅游局?jǐn)M在咸嘉湖建立西湖生態(tài)文化公園. 如圖,設(shè)計方案中利用湖中半島上建一條長為的觀光帶AB,同時建一條連接觀光帶和湖岸的長為2的觀光游廊BC,且BC與湖岸MN(湖岸可看作是直線)的夾角為60°,BA與BC的夾角為150°,并在湖岸上的D處建一個觀光亭,設(shè)CD=xkm(1<x<4).

(Ⅰ)用x分別表示tan∠BDC和tan∠ADM;

(Ⅱ)試確定觀光亭D的位置,使得在觀光亭D處觀賞

觀光帶AB的視覺效果最佳.

查看答案和解析>>

 (本小題滿分13分)

已知橢圓的焦點為F1(-4,0),F(xiàn)2(4,0),過點F2且垂直于軸的直線與橢圓的一個交點為B,且|BF1|+|BF2|=10,設(shè)點A,C為橢圓上不同兩點,使得|AF2|,|BF2|,|CF2|成等差數(shù)列.

(Ⅰ) 求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ) 求線段AC的中點的橫坐標(biāo);

(Ⅲ)求線段AC的垂直平分線在y軸上的截距的取值范圍.

查看答案和解析>>

一、選擇題(本大題共8小題,每小題5分,共40分)

1.D      2.A      3.B      4.C       5.D      6.B     7.C      8. A

二、填空題(本大題共6小題,每小題5分,共30分)

9.點               10.               11. 6 , 60

12.                13.                   14. ,

注:兩個空的填空題第一個空填對得2分,第二個空填對得3分.

三、解答題(本大題共6小題,共80分)

15. (本小題滿分13分)

解:(Ⅰ)設(shè)等比數(shù)列的公比為,依題意有,    (1)

,將(1)代入得.所以.  ……………3分

于是有                             ………………4分

解得                             ………………6分

是遞增的,故.                   ………………7分

所以.                                         ………………9分

   (Ⅱ).                                …………………11分

.                                       ………………13分

16.(本小題滿分13分)

解:(Ⅰ)在△中,由.

   所以.            …………………5分

(Ⅱ)由.  ………………………………….9分

,=;          ………………………11分

于是有,解得.           ……………………………13分

 

17.(本小題滿分14分)

解法一:(Ⅰ)∵正方形,∴

又二面角是直二面角,

⊥平面.

平面,

.

,,是矩形,的中點,

==,

=,

⊥平面

平面,故平面⊥平面.          ……………………5分

 (Ⅱ)如圖,由(Ⅰ)知平面⊥平面,且交于,在平面內(nèi)作,垂足為,則⊥平面.

        ∴∠與平面所成的角.

∴在Rt△中,=.  

 .                            

與平面所成的角為 .                 ………………………9分

   (Ⅲ)由(Ⅱ),⊥平面.作,垂足為,連結(jié),則,

        ∴∠為二面角的平面角.                 …………….11分

∵在Rt△中,=,在Rt△中,.

∴在Rt△中,

即二面角的大小為arcsin.    ………………………………14分

解法二:

如圖,以為原點建立直角坐標(biāo)系

(0,0,0),(0,2,0),

(0,2,2),,,0),

,0,0).

   (Ⅰ) =(,0),=(,0),

         =(0,0,2),

?=(,,0)?(,0)=0,

 ? =(,0)?(0,0,2)= 0.

,,

⊥平面,又平面,故平面⊥平面.     ……5分

   (Ⅱ)設(shè)與平面所成角為.

        由題意可得=(,,0),=(0,2,2 ),=(,0).

        設(shè)平面的一個法向量為=(,,1),

        由.

          .

與平面所成角的大小為.            ……………..9分

   (Ⅲ)因=(1,-1,1)是平面的一個法向量,

        又⊥平面,平面的一個法向量=(,0,0),

        ∴設(shè)的夾角為,得,

        ∴二面角的大小為.         ………………………………14分

18. (本小題滿分13分)

解: (Ⅰ)由已知甲射擊擊中8環(huán)的概率為0.2,乙射擊擊中9環(huán)的概率為0.4,則所求事件的概率

       .                                     ………………4分

  (Ⅱ) 設(shè)事件表示“甲運動員射擊一次,擊中9環(huán)以上(含9環(huán))”, 記“乙運動員射擊1次,擊中9環(huán)以上(含9環(huán))”為事件,則

.                           ………………………6分

.                          ………………………8分

“甲、乙兩運動員各自射擊兩次,這4次射擊中恰有3次擊中9環(huán)以上(含9環(huán))”包含甲擊中2次、乙擊中1次,與甲擊中1次、乙擊中2次兩個事件,顯然,這兩個事件互斥.

甲擊中2次、乙擊中1次的概率為

;            ……………………..10分

甲擊中1次、乙擊中2次的概率為

.             …………………12分

所以所求概率為.                      

答: 甲、乙兩運動員各自射擊兩次,這4次射擊中恰有3次擊中9環(huán)以上的概率為.  ……….13分

                                                      

19.(本小題滿分14分)

解: (Ⅰ) 由已知 , 又圓心,則 .故   .

  所以直線垂直.                        ………………………3分

        (Ⅱ) 當(dāng)直線軸垂直時,易知符合題意;        ………………4分

當(dāng)直線與軸不垂直時,設(shè)直線的方程為.   …………5分

由于,所以

,解得.         ………………7分

故直線的方程為.          ………………8分

         (Ⅲ)當(dāng)軸垂直時,易得,,又

,故.                    ………………10分

當(dāng)的斜率存在時,設(shè)直線的方程為,代入圓的方程得

.則

,即,

.又由,

.

.

綜上,的值與直線的斜率無關(guān),且.    …………14分

另解一:連結(jié),延長交于點,由(Ⅰ)知.又,

故△∽△.于是有.

               ………………………14分

另解二:連結(jié)并延長交直線于點,連結(jié)由(Ⅰ)知,

所以四點

同步練習(xí)冊答案