題目列表(包括答案和解析)
在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,向量=(sinA,b+c),=(a-c,sinC-sinB),滿足=
(Ⅰ)求角B的大�。�
(Ⅱ)設(shè)=(sin(C+),), =(2k,cos2A) (k>1), 有最大值為3,求k的值.
【解析】本試題主要考查了向量的數(shù)量積和三角函數(shù),以及解三角形的綜合運(yùn)用
第一問中由條件|p +q |=| p -q |,兩邊平方得p·q=0,又
p=(sinA,b+c),q=(a-c,sinC-sinB),代入得(a-c)sinA+(b+c)(sinC-sinB)=0,
根據(jù)正弦定理,可化為a(a-c)+(b+c)(c-b)=0,
即,又由余弦定理=2acosB,所以cosB=,B=
第二問中,m=(sin(C+),),n=(2k,cos2A) (k>1),m·n=2ksin(C+)+cos2A=2ksin(C+B) +cos2A
=2ksinA+-=-+2ksinA+=-+ (k>1).
而0<A<,sinA∈(0,1],故當(dāng)sin=1時(shí),m·n取最大值為2k-=3,得k=.
b2+c2-a2 |
2bc |
a2+c2-b2 |
2ac |
給出問題:已知滿足,試判定的形狀.某學(xué)生的解答如下:
解:(i)由余弦定理可得,
,
,
,
故是直角三角形.
(ii)設(shè)外接圓半徑為.由正弦定理可得,原式等價(jià)于
,
故是等腰三角形.
綜上可知,是等腰直角三角形.
請(qǐng)問:該學(xué)生的解答是否正確?若正確,請(qǐng)?jiān)谙旅鏅M線中寫出解題過程中主要用到的思想方法;若不正確,請(qǐng)?jiān)谙旅鏅M線中寫出你認(rèn)為本題正確的結(jié)果. .
已知中,內(nèi)角的對(duì)邊的邊長(zhǎng)分別為,且
(I)求角的大小;
(II)若求的最小值.
【解析】第一問,由正弦定理可得:sinBcosC=2sinAcosB-sinCcosB,即sin(B+C)=2sinAcosB,
第二問,
三角函數(shù)的性質(zhì)運(yùn)用。
解:(Ⅰ)由正弦定理可得:sinBcosC=2sinAcosB-sinCcosB,即sin(B+C)=2sinAcosB,
(Ⅱ)由(Ⅰ)可知
,,則當(dāng) ,即時(shí),y的最小值為.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com