題目列表(包括答案和解析)
(17) (本小題滿分12分)在△ABC中,BC=2,,.
(Ⅰ)求AB的值;w.w.(Ⅱ)求的值.
17(本小題滿分12分)
設(shè)等差數(shù)列滿足,。
(Ⅰ)求的通項公式;
(Ⅱ)求的前項和及使得最大的序號的值。
(本小題滿分12分)
已知斜率為1的直線1與雙曲線C:相交于B、D兩點(diǎn),且BD的中點(diǎn)為M(1.3)
(Ⅰ)(Ⅰ)求C的離心率;
(Ⅱ)(Ⅱ)設(shè)C的右頂點(diǎn)為A,右焦點(diǎn)為F,|DF|·|BF|=17證明:過A、B、D三點(diǎn)的圓與x軸相切。
(本小題滿分12分)
已知斜率為1的直線1與雙曲線C:相交于B、D兩點(diǎn),且BD的中點(diǎn)為M(1.3)
(Ⅰ)(Ⅰ)求C的離心率;
(Ⅱ)(Ⅱ)設(shè)C的右頂點(diǎn)為A,右焦點(diǎn)為F,|DF|·|BF|=17證明:過A、B、D三點(diǎn)的圓與x軸相切。
(本小題滿分12分)某港口海水的深度(米)是時間(時)()的函數(shù),記為:
已知某日海水深度的數(shù)據(jù)如下:
(時) | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
(米) | 10.0 | 13.0 | 9.9 | 7.0 | 10.0 | 13.0 | 10.1 | 7.0 | 10.0 |
一、選擇題
1 B
二、填空題
11 192 12 286 13 14 15 840 16
三、解答題
17 (本題12分)
解:(I)
2分
(II)
8分
由已知條件
根據(jù)正弦定理,得 10分
12分
18 (本題12分)
解:(I)在7人中選出3人,總的結(jié)果數(shù)是種, (2分)
記“被選中的3人中至多有1名女生”為事件A,則A包含兩種情形:
①被選中的是1名女生,2名男生的結(jié)果數(shù)是,
②被選中的是3名男生的結(jié)果數(shù)是 4分
至多選中1名女生的概率為 6分
(II)由題意知隨機(jī)變量可能的取值為:0,1,2,3,則有
,
8分
∴
0
1
2
3
P
10分
∴的數(shù)學(xué)期望 12分
19 (本題12分)
解:(I)連接PO,以O(shè)A,OB,OP所在的直線為x軸,y軸,z軸
建立如圖所示的空間直角坐標(biāo)系。 2分
∵正四棱錐的底面邊長和側(cè)棱長都是2。
∴
∴
(II)∵
∴是平面PDB的一個法向量。 8分
由(I)得
設(shè)平面BMP的一個法向量為
則由,得
,不妨設(shè)c=1
得平面BMP的一個法向量為 10分
∵二面角M―PB―D小于90°
∴二面角M―PB―D的余弦值為 12分
20 (本題12分)
解:(I)由已知得
2分
由,得 4分
即。解得k=50或(舍去)
6分
(II)由,得
8分
9分
是等差數(shù)列
則
11分
12分
21 (本題14分)
解:(I)依題意得
2分
把
解得
∴橢圓的方程為 4分
(II)由(I)得,設(shè),如圖所示,
∵M(jìn)點(diǎn)在橢圓上,
∴ ①
∵M(jìn)點(diǎn)異于頂點(diǎn)A、B,
∴
由P、A、M三點(diǎn)共線,可得,
從而 7分
∴ ② 8分
將①式代入②式化簡得 10分
∵
∴ 12分
于是∠MBP為銳角,從而∠MBN為鈍角,
∴點(diǎn)B在以MN為直徑的圓內(nèi)。 14分
22 (本題14分)
解:(I),
令 2分
而
∴當(dāng) 4分
(II)設(shè)函數(shù)g(x)在[0,2]上的值域是A,
∵若對任意
∴ 6分
①當(dāng),
∴函數(shù)上單調(diào)遞減。
∵
∴; 8分
②當(dāng)
令(舍去) 9分
(i)當(dāng)時,的變化如下表:
(ii)當(dāng)
∴函數(shù)g(x)在(0,2)上單調(diào)遞減。
綜上可知,實數(shù)a的取值范圍是
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com