(Ⅰ)求和的表達式, 查看更多

 

題目列表(包括答案和解析)

已知

(Ⅰ)若的表達式;

(Ⅱ)若函數(shù)f (x)和函數(shù)g(x)的圖象關(guān)于原點對稱,求函數(shù)g(x)的解析式;

(Ⅲ)若上是增函數(shù),求實數(shù)l的取值范圍

查看答案和解析>>

(本小題滿分16分)通過研究學生的學習行為,心理學家發(fā)現(xiàn),學生的接受能力依賴于老師引入概念和描述問題所用的時間:講授開始時,學生的興趣激增;中間有一段不太長的時間,學生的興趣保持較理想的狀態(tài);隨后學生的注意力開始分散.分析結(jié)果和實驗表明,用f(x)表示學生掌握和接受概念的能力(f(x)的值越大,表示接受的能力越強),x表示提出和講授概念的時間(單位:min),可有以下的公式:

   (1)講課開始后多少分鐘,學生的注意力最集中?能持續(xù)多少分鐘?

   (2)講課開始后5分鐘與講課開始后25分鐘比較,何時學生的注意力更集中?

   (3)一道數(shù)學難題,需要講解24分鐘,并且要求學生的注意力至少達到180,那么經(jīng)過適當安排,老師能否在學生達到所需的狀態(tài)下講授完這道題目?

查看答案和解析>>

已知,

設(shè).

(Ⅰ)求的表達式;

(Ⅱ)若函數(shù)和函數(shù)的圖象關(guān)于原點對稱,

(ⅰ)求函數(shù)的解析式;

(ⅱ)若函數(shù)在區(qū)間上是增函數(shù),求實數(shù)l的取值范圍.

 

查看答案和解析>>

已知

(Ⅰ)若,求的表達式;

(Ⅱ)若函數(shù)和函數(shù)的圖象關(guān)于原點對稱,求函數(shù)的解析式;

(Ⅲ)若上是增函數(shù),求實數(shù)的取值范圍.

 

查看答案和解析>>

已知

(Ⅰ)若的表達式;

(Ⅱ)若函數(shù)f (x)和函數(shù)g(x)的圖象關(guān)于原點對稱,求函數(shù)g(x)的解析式;

(Ⅲ)若上是增函數(shù),求實數(shù)l的取值范圍.

 

查看答案和解析>>

 

一、選擇題:本大題共12個小題,每小題5分,共60分.

1-5:DBADC; 6-10:BACDC; 11-12: BC.

二、填空題:本大題共4個小題,每小題4分,共16分.

13.3; 14.-4; 15.1; 16.

三、解答題:本大題共6個小題,共74分.解答要寫出文字說明,證明過程或演算步驟.

 

17.解:(Ⅰ)∵l1∥l2,

,????????????????????????????????????????????????????????????????????????????????????????? 3分

,

.????????????????????????????????????????????????????????????????????????????????? 6分

(Ⅱ)∵

,∴,當且僅當時。ⅲ剑ⅲ??????????? 8分

,∴,?????????????????????????????????????????? 10分

,當且僅當時。ⅲ剑ⅲ

故△ABC面積取最大值為.??????????????????????????????????????????????????????????????????????????? 12分

 

18.解:(Ⅰ)ξ=3表示取出的三個球中數(shù)字最大者為3.

①三次取球均出現(xiàn)最大數(shù)字為3的概率;??????????????????????????????????????? 1分

②三次取球中有2次出現(xiàn)最大數(shù)字3的概率;???????????????????? 3分

③三次取球中僅有1次出現(xiàn)最大數(shù)字3的概率.????????????????? 5分

∴P(ξ=3)=P1+P2+P3=.?????????????????????????????????????????????????????????????????????????????? 6分

(Ⅱ)在ξ=k時, 利用(Ⅰ)的原理可知:

(k=1、2、3、4).???????? 8分

則ξ的概率分布列為:

ξ

1

2

3

4

P

??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? 10分

∴ξ的數(shù)學期望Eξ=1×+2×+3×+4× = .???????????????????????????????? 12分

 

19.(Ⅰ)證明:∵四邊形AA1C1C是菱形,∴AA1=A1C1=C1C=CA=1,∴△AA1B是等邊三角形,設(shè)O是AA1的中點,連接BO,則BO⊥AA1. 2分

∵側(cè)面ABB1A1⊥AA1C1C,∴BO⊥平面AA1C1C,菱形AA1C1C面積為,知C到AA1的距離為,,∴△AA1C1是等邊三角形,且C1O⊥AA1,又C1O∩BO=O.

∴AA1⊥面BOC1,又BC1Ì面BOC1.∴AA1⊥BC1.???????????????????????????????????????????? 4分

(Ⅱ)解:由(Ⅰ)知OA、OC1、OB兩兩垂直,以O(shè)為原點,建立如圖空間直角坐標系,則,,,.則,,.?????????????????????????????????????????????????????????????????????????????????????????????? 5分

設(shè)是平面ABC的一個法向量,

,則.設(shè)A1到平面ABC的距離為d.

.??????????????????????????????????????????????????????????????????????????? 8分

(Ⅲ)解:由(Ⅱ)知平面ABC的一個法向量是,又平面ACC1的一個法向量.   9分

.???????????????????????????????????????????????????????????? 11分

∴二面角B-AC-C1的余弦值是.???????????????????????????????????????????????????????????????? 12分

 

20.解:(Ⅰ),對稱軸方程為,故函數(shù)在[0,1]上為增函數(shù),∴.?????????????????????????????????????????????????????????????????????????????????????? 2分

時,.??????????????????????????????????????????????????????????????????????????????????????????? 3分

            ①

       ②

②-①得,即,?????????????????????????????????????????????????? 4分

,∴數(shù)列是以為首項,為公比的等比數(shù)列.

,∴.?????????????????????????????????????????????????? 6分

(Ⅱ)∵,∴

???????????????????????????????????????????????????????? 7分

可知:當時,;當時,;當時,

?????????????????????????????????????????????????????????????????????????? 10分

可知存在正整數(shù)或6,使得對于任意的正整數(shù)n,都有成立.???????????? 12分

 

21.解:(Ⅰ)設(shè),,

,

,

.∵,

,∴,∴.??????????????????????????????????????????????????????????????? 2分

則N(c,0),M(0,c),所以,

,則

∴橢圓的方程為.??????????????????????????????????????????????????????????????????????????????? 4分

(Ⅱ)∵圓O與直線l相切,則,即,????????????????????????????????? 5分

消去y得

∵直線l與橢圓交于兩個不同點,設(shè),

,

,,???????????????????????????????????????????????????????????????? 7分

,

,.?????????????????? 8分

.???????????????????????????????????????? 9分

(或).

設(shè),則,,,

,則

時單調(diào)遞增,????????????????????????????????????????????????????????????????????????? 11分

∴S關(guān)于μ在區(qū)間單調(diào)遞增,,,

.??????????????????????????????????????????????????????????????????????????????????????????????????? 12分

(或

∴S關(guān)于u在區(qū)間單調(diào)遞增,?????????????????????????????????????????????????????????????????????? 11分

,,.)????????????????????????????????????????????????????????? 12分

 

22.解:(Ⅰ)因為,,則,     1分

時,;當時,

上單調(diào)遞增;在上單調(diào)遞減,

∴函數(shù)處取得極大值.????????????????????????????????????????????????????????????????????? 2分

∵函數(shù)在區(qū)間(其中)上存在極值,

解得.????????????????????????????????????????????????????????????????????????????????? 3分

(Ⅱ)不等式,即為,?????????????????????????????????????????? 4分

,∴,??????? 5分

,則,∵,∴,上遞增,

,從而,故上也單調(diào)遞增,

,

.???????????????????????????????????????????????????????????????????????????????????????????????????????????? 7分

(Ⅲ)由(Ⅱ)知:恒成立,即,??????????? 8分

,????????????????????????????????????????????????????? 9分

,

,

,

………

,?????????????????????????????????????????????????????????????????????????????????? 10分

疊加得:

.???????????????????????????????????????????????????????????????????????? 12分

,

.????????????????????????????????????????????????????????????????????????? 14分

 

 

 

 

 

 

 

 

 

 


同步練習冊答案