①平面,②,③平面平面. 查看更多

 

題目列表(包括答案和解析)

平面上三個力
F1
、
F2
、
F3
作用于一點且處于平衡狀態(tài),|
F1
|=1 N
,|
F2
|=
6
+
2
2
 
N
,
F1
F2
的夾角為45°,求:
(1)
F3
的大;
(2)
F3
F1
夾角的大小.

查看答案和解析>>

平面內(nèi)給定三個向量
a
=(3,2)
,
b
=(-1,2)
c
=(4,1)
,回答下列三個問題:
(1)試寫出將
a
b
c
表示的表達式;
(2)若(
a
+k
c
)⊥(2
b
-
a
)
,求實數(shù)k的值;
(3)若向量
d
滿足(
d
+
b
)∥(
a
-
c
)
,且|
d
-
a
|=
26
,求
d

查看答案和解析>>

13、平面幾何中,正三角形中任一點到三條邊的距離之和為定值.類比這一性質(zhì),在空間中相應的結論是:
正四面體內(nèi)任意一點到各面的距離之和是一個定值”;或“正多面體內(nèi)任意一點到各面的距離之和是一個定值”.

查看答案和解析>>

14、平面α內(nèi)有四個點,平面β內(nèi)有五個點.從這九個點中,任取三點最多可確定
72
個平面;任取四點最多可確定
120
個四面體.(用數(shù)字作答)

查看答案和解析>>

平面直角坐標系xOy中,已知⊙M經(jīng)過點F1(0,-c),F(xiàn)2(0,c),A(
3
c,0)三點,其中c>0.
(1)求⊙M的標準方程(用含c的式子表示);
(2)已知橢圓
y2
a2
+
x2
b2
=1(a>b>0)
(其中a2-b2=c2)的左、右頂點分別為D、B,⊙M與x軸的兩個交點分別為A、C,且A點在B點右側,C點在D點右側.
①求橢圓離心率的取值范圍;
②若A、B、M、O、C、D(O為坐標原點)依次均勻分布在x軸上,問直線MF1與直線DF2的交點是否在一條定直線上?若是,請求出這條定直線的方程;若不是,請說明理由.

查看答案和解析>>

評分說明:

1.本解答給出了一種或幾種解法供參考,如果考生的解法與本解答不同,可根據(jù)試題的主要考查內(nèi)容比照評分參考制訂相應的評分細則.

2.對計算題,當考生的解答在某一步出現(xiàn)錯誤時,如果后繼部分的解答未改變該題的內(nèi)容和難度,可視影響的程度決定后繼部分的給分,但不得超過該部分正確解答應得分數(shù)的一半;如果后繼部分的解答有較嚴重的錯誤,就不再給分.

3.解答右端所注分數(shù),表示考生正確做到這一步應得的累加分數(shù).

4.只給整數(shù)分數(shù).選擇題不給中間分.

一.選擇題

1.D      2.B       3.B       4.C       5.A      6.C       7.C       8.A      9.B       10.D

11.B     12.D

二.填空題

13.300;     14.60;       15.①、②③或①、③②;     16.103.

三.解答題

17.解:

(Ⅰ)因為點的坐標為,根據(jù)三角函數(shù)定義可知,,,

所以.     2分

(Ⅱ)∵,,∴. 3分

由余弦定理,得 

.   5分

,∴,∴. 7分

,∴.     9分

故BC的取值范圍是.(或?qū)懗?sub>) 10分

18.解:

(Ⅰ)記“恰好選到1個曾經(jīng)參加過社會實踐活動的同學”為事件的,    1分

則其概率為.   5分

(Ⅱ)記“活動結束后該宿舍至少有3個同學仍然沒有參加過社會實踐活動”為事件的B,“活動結束后該宿舍仍然有3個同學沒有參加過社會實踐活動”為事件的C,“活動結束后該宿舍仍然有4個同學沒有參加過社會實踐活動”為事件的D. 6分

.     10分

=+=.      12分

19.證:

(Ⅰ)因為四邊形是矩形∴,

又∵ABBC,∴平面.     2分

平面,∴平面CA1B⊥平面A1ABB1.       3分

解:(Ⅱ)過A1A1DB1BD,連接

平面,

BCA1D

平面BCC1B1,

故∠A1CD為直線與平面所成的角.

       5分

在矩形中,,

因為四邊形是菱形,∠A1AB=60°, CB=3,AB=4,

,. 7分

(Ⅲ)∵,∴平面

到平面的距離即為到平面的距離. 9分

連結,交于點O,

∵四邊形是菱形,∴

∵平面平面,∴平面

即為到平面的距離. 11分

,∴到平面的距離為.  12分

 

20.解:

(Ⅰ)由題意,,  1分

又∵數(shù)列為等差數(shù)列,且,∴.   3分

,∴.     5分

(Ⅱ)的前幾項依次為, 7分

=5.    8分

.    12分

21.解:

(Ⅰ)∵,     2分

,得.     4分

的單調(diào)增區(qū)間為.  5分

(Ⅱ)當時,恒有||≤2,即恒有成立.

即當時,      6分

由(Ⅰ)知上為增函數(shù),在上為減函數(shù),在上為增函數(shù),

,,∴

max.       8分

,,∴

min.   10分

.解得

所以,當時,函數(shù)上恒有||≤2成立. 12分

22.解:

(Ⅰ)由已知,,

解得    2分

,∴

軸,.  4分

,

成等比數(shù)列.    6分

(Ⅱ)設、,由

得  ,

   8分

.     10分

,∴.∴,或

∵m>0,∴存在,使得.     12分

 


同步練習冊答案