線(xiàn)l上的點(diǎn)A.B.C的橫坐標(biāo).=.設(shè)b1=1.=+bn. (Ⅰ)判斷數(shù)列{an+1}是否為等比數(shù)列.并證明你的結(jié)論, 查看更多

 

題目列表(包括答案和解析)

設(shè) A、B、C是直線(xiàn)l上的三點(diǎn),向量
OA
,
OB
OC
滿(mǎn)足關(guān)系:
OA
+(y-
3
sinxcosx)
OB
-(
1
2
+sin2x)
OC
=
0

(Ⅰ)化簡(jiǎn)函數(shù)y=f(x)的表達(dá)式;
(Ⅱ)若函數(shù)g(x)=f(
1
2
x+
π
3
)
,x∈[0,
12
]
的圖象與直線(xiàn)y=b的交點(diǎn)的橫坐標(biāo)成等差數(shù)列,試求實(shí)數(shù)b的值;
(Ⅲ)令函數(shù)h(x)=
2
(sinx+cosx)+sin2x-a,若對(duì)任意的x1,x2∈[0,
π
2
]
,不等式h(x1)≤f(x2)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

設(shè) A、B、C是直線(xiàn)l上的三點(diǎn),向量滿(mǎn)足關(guān)系:=
(Ⅰ)化簡(jiǎn)函數(shù)y=f(x)的表達(dá)式;
(Ⅱ)若函數(shù)的圖象與直線(xiàn)y=b的交點(diǎn)的橫坐標(biāo)成等差數(shù)列,試求實(shí)數(shù)b的值;
(Ⅲ)令函數(shù)h(x)=(sinx+cosx)+sin2x-a,若對(duì)任意的,不等式h(x1)≤f(x2)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

設(shè) A、B、C是直線(xiàn)l上的三點(diǎn),向量
OA
,
OB
,
OC
滿(mǎn)足關(guān)系:
OA
+(y-
3
sinxcosx)
OB
-(
1
2
+sin2x)
OC
=
0

(Ⅰ)化簡(jiǎn)函數(shù)y=f(x)的表達(dá)式;
(Ⅱ)若函數(shù)g(x)=f(
1
2
x+
π
3
)
,x∈[0,
12
]
的圖象與直線(xiàn)y=b的交點(diǎn)的橫坐標(biāo)成等差數(shù)列,試求實(shí)數(shù)b的值;
(Ⅲ)令函數(shù)h(x)=
2
(sinx+cosx)+sin2x-a,若對(duì)任意的x1,x2∈[0,
π
2
]
,不等式h(x1)≤f(x2)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

設(shè)A、B是函數(shù)y= log2x圖象上兩點(diǎn), 其橫坐標(biāo)分別為a和a+4, 直線(xiàn)l: x=a+2與函數(shù)y= log2x圖象交于點(diǎn)C, 與直線(xiàn)AB交于點(diǎn)D。

(1)求點(diǎn)D的坐標(biāo);

(2)當(dāng)△ABC的面積等于1時(shí), 求實(shí)數(shù)a的值。

(3)當(dāng)時(shí),求△ABC的面積的取值范圍。

 

查看答案和解析>>

設(shè)A、B是函數(shù)y= log2x圖象上兩點(diǎn), 其橫坐標(biāo)分別為a和a+4, 直線(xiàn)l: x=a+2與函數(shù)y= log2x圖象交于點(diǎn)C, 與直線(xiàn)AB交于點(diǎn)D。
(1)求點(diǎn)D的坐標(biāo);
(2)當(dāng)△ABC的面積等于1時(shí), 求實(shí)數(shù)a的值。
(3)當(dāng)時(shí),求△ABC的面積的取值范圍。

查看答案和解析>>


同步練習(xí)冊(cè)答案