③在平面上.到定點(2.1)的距離是與到定值直線距離相等的點的軌跡是拋物線, 查看更多

 

題目列表(包括答案和解析)

在平面直角坐標(biāo)系中,已知雙曲線.

    (1)過的左頂點引的一條漸近線的平行線,求該直線與另一條漸近線及x軸圍成

的三角形的面積;(4分)

    (2)設(shè)斜率為1的直線lPQ兩點,若l與圓相切,求證:

OPOQ;(6分)

    (3)設(shè)橢圓. 若MN分別是、上的動點,且OMON,

求證:O到直線MN的距離是定值.(6分)

 

查看答案和解析>>

在平面直角坐標(biāo)系中,已知雙曲線.
(1)過的左頂點引的一條漸近線的平行線,求該直線與另一條漸近線及x軸圍成的三角形的面積;(4分)
(2)設(shè)斜率為1的直線lP、Q兩點,若l與圓相切,求證:OPOQ;(6分)
(3)設(shè)橢圓. 若M、N分別是、上的動點,且OMON,求證:O到直線MN的距離是定值.(6分)

查看答案和解析>>

在平面直角坐標(biāo)系中,已知曲線C上任意一點P到兩個定點數(shù)學(xué)公式數(shù)學(xué)公式的距離之和為4.
(1)求曲線C的方程;
(2)設(shè)過(0,-2)的直線l與曲線C交于A、B兩點,以線段AB為直徑作圓.試問:該圓能否經(jīng)過坐標(biāo)原點?若能,請寫出此時直線l的方程,并證明你的結(jié)論;若不是,請說明理由.

查看答案和解析>>

在平面直角坐標(biāo)系中,已知O為坐標(biāo)原點,M(1,-3),N(5,1).若點C滿足=t +(1-t)(t∈R).點C的軌道與拋物線y2=4x交于A、B兩點.

(Ⅰ)求證:;

(Ⅱ)在x軸正半軸上是否存在一定點P(m,0),使得過點P的任意一條拋物線的弦的長度是原點到該弦中點距離的2倍,若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

在平面直角坐標(biāo)系中,已知曲線C上任意一點P到兩個定點的距離之和為4.
(1)求曲線C的方程;
(2)設(shè)過(0,-2)的直線l與曲線C交于A、B兩點,以線段AB為直徑作圓.試問:該圓能否經(jīng)過坐標(biāo)原點?若能,請寫出此時直線l的方程,并證明你的結(jié)論;若不是,請說明理由.

查看答案和解析>>

 

一、選擇題

1―5  ACDAA    6―10  BACDB    11―12  AC

二、填空題

13.-    14.12       15.-4或-26     16.②④

三、解答題

17.(1)由題意:

又A+B

   (2)當(dāng)A+B=時,2A+2B=

按向量平移后得到函數(shù)的圖象;故     10分

18.解:(1)ξ的可能取值為1,2,3,4

   (2)由題意,兩人各自從自己箱子里任取一球比顏色共有C(種)不同情形,每種情形都是等可能的,記甲獲勝為事件A,

則P(A)=

甲獲勝的概率小于乙獲勝的概率,不公平。                                                    12分

19.解法:(1)連結(jié)AC交BD于點O,則PO⊥面ABCD,又AC⊥BD

*  PA⊥BD,1D1,PA⊥B1D1

    (2)AO⊥BD,AO⊥PO,AO⊥面PBD,過點O作OM⊥PD于M,連結(jié)AM,則AM⊥PD

         *∠AMO就是二面角A-PD-O的平面角θ,又AB=2,

PA=

     *                                   8分

   (3)分別取AD、BC中點E、F,作平面PEF,交底面于兩點S、S1交B1C1于點B2,過點B2作B2B3⊥PS于點B3,則B2B3⊥面PAD,又B1C1//AD,*B2B3的長就是點B1到平面PAD的距離,PO=AA1=2

          *EF= 

                                  12分

    方法二,坐標(biāo)法略

20.解:(1)當(dāng)x=1時,

   且x=1時也符合上式

                                                                                                              6

   (2)該商場預(yù)計第x月銷售該商品的月利潤為

(舍)

當(dāng)1≤x<5時,                                                                                                          10

*當(dāng)x=5時,元                                                          10分

綜上,商場2009年第5月份的月利潤最大為3125元。                                       12分

21.解:(1)以AB所在直線為x軸,線段AB的中垂線為y軸建立直角坐標(biāo)系,

設(shè)|CA|+|CB|=2a(a>3),點c的軌跡是以A、B為焦點的橢圓,且焦距2c=|AB|=6

此時|PA|=|PB|,P(0,±4)

                                                            5分

   (2)不妨設(shè)A點坐標(biāo)為A(-3,0),M(x1,y1),N(x2,y2)

    ①當(dāng)直線MN的傾斜角不為90°時,設(shè)其方程為:

    代入橢圓方程化簡得:

顯然

由橢圓第二定義得:

 

     =25+

只要考慮:的最小值,即1

顯然當(dāng)k=0時,的最小值16。                                                         10分

   ②當(dāng)直線MN的傾角為90°時,x1=x2=-3,得=

           這樣的M、N不存在

的最小值集合為空集。                                                         12分

22.解(1):由

   即數(shù)列為公正比的等比數(shù)列

                                                                                                         4分

   (2)

即要證明:成立

是減函數(shù),故

都成立

成立                                                                8分

   (3)

      

       利用錯位相減法求得:

       故                                                                          12分

 


同步練習(xí)冊答案