17. 一次數(shù)學(xué)考試中共有10道選擇題.每道選擇題有4個選項.其中有且僅有一個是正確的.評分標(biāo)準(zhǔn)規(guī)定:“每題只選1項.答對得5分.不答或答錯得0分. 某考生每道題都給出了一個答案.已經(jīng)確定有7道題的答案是正確的.而其余題中.有兩道可以判斷出一個選項是錯誤的.還有一道題因完全不會做只能亂猜.試求出該考生:(1) 得50分的概率, 查看更多

 

題目列表(包括答案和解析)

(本小題滿分13分)

       某次月考數(shù)學(xué)第Ⅰ卷共有8道選擇題,每道選擇題有4個選項,其中只有一個是正確的;評分標(biāo)準(zhǔn)為:“每題只有一個選項是正確的,選對得5分,不選或選錯得0分!蹦晨忌康李}都給出一個答案,已確定有5道題的答案是正確的,而其余3道題中,有一道題可判斷出兩個選項是錯誤的,有一道題可以判斷出一個選項是錯誤的,還有一道題因不了解題意而亂猜,試求該考生:

   (Ⅰ)得40分的概率;

   (Ⅱ)得多少分的可能性最大?

   (Ⅲ)所得分?jǐn)?shù)的數(shù)學(xué)期望。

查看答案和解析>>

(本小題滿分13分)

       某次月考數(shù)學(xué)第Ⅰ卷共有8道選擇題,每道選擇題有4個選項,其中只有一個是正確的;評分標(biāo)準(zhǔn)為:“每題只有一個選項是正確的,選對得5分,不選或選錯得0分!蹦晨忌康李}都給出一個答案,已確定有5道題的答案是正確的,而其余3道題中,有一道題可判斷出兩個選項是錯誤的,有一道題可以判斷出一個選項是錯誤的,還有一道題因不了解題意而亂猜,試求該考生:

   (Ⅰ)得40分的概率;

   (Ⅱ)得多少分的可能性最大?

   (Ⅲ)所得分?jǐn)?shù)的數(shù)學(xué)期望。

查看答案和解析>>

(本小題滿分13分)
在一次數(shù)學(xué)考試中,共有10道選擇題,每題均有四個選項,其中有且只有一個選項是正確的,評分標(biāo)準(zhǔn)規(guī)定:“每道題只選一個選項,答對得5分,不答或答錯得零分”.某考生已確定有6道題是正確的,其余題目中:有兩道題可判斷兩個選項是錯誤的,有一道可判斷一個選項是錯誤的,還有一道因不理解題意只好亂猜,請求出該考生:
(Ⅰ)得50分的概率;
(Ⅱ)得40分的概率.www.www.zxxk.com

查看答案和解析>>

(本小題滿分13分)
在一次數(shù)學(xué)考試中,共有10道選擇題,每題均有四個選項,其中有且只有一個選項是正確的,評分標(biāo)準(zhǔn)規(guī)定:“每道題只選一個選項,答對得5分,不答或答錯得零分”.某考生已確定有6道題是正確的,其余題目中:有兩道題可判斷兩個選項是錯誤的,有一道可判斷一個選項是錯誤的,還有一道因不理解題意只好亂猜,請求出該考生:
(Ⅰ)得50分的概率;www.www.zxxk.com
(Ⅱ)設(shè)該考生所得分?jǐn)?shù)為,求的數(shù)學(xué)期望.

查看答案和解析>>

(本小題滿分13分)

在一次數(shù)學(xué)考試中,共有10道選擇題,每題均有四個選項,其中有且只有一個選項是正確的,評分標(biāo)準(zhǔn)規(guī)定:“每道題只選一個選項,答對得5分,不答或答錯得零分”.某考生已確定有6道題是正確的,其余題目中:有兩道題可判斷兩個選項是錯誤的,有一道可判斷一個選項是錯誤的,還有一道因不理解題意只好亂猜,請求出該考生:

(Ⅰ)得50分的概率;

(Ⅱ)設(shè)該考生所得分?jǐn)?shù)為,求的數(shù)學(xué)期望.

 

查看答案和解析>>

2009年4月

一、選擇題:本大題共10小題,每題5分,共50分.

1.A    2.D    3.B    4.A    5.D    6.C    7.D    8.B    9.B    10.C

二、填空題:本大題共5小題,每題5分,共25分.

11.                                    12.                                  13.

14.                                  15.①②⑤

三、解答題:本題共6小題,共75分.

16.解:(1) ??????????????????????????????????????? 3分

??????????????????????????????????????????????????????????????????????????? 5分

(2) ????????????????????????????????????????????????????? 8分

????????????????????????????????????????????????????????????????? 9分

???????????????????????????????????????????????????????????????????? 10分

?????????????????????????????????????????????????????????????????????????? 11分

?????????????? 13分

17.解:(1) 有兩道題答對的概率為,有一道題答對的概率為??????????????????????????? 2分

????????????????????????????????????????????????????????? 5分

(2) ?????????????????????????????????????????????????????? 7分

?????????????????????????????? 9分

??????????????????????????????? 11分

的分布列為

35

40

45

50

P

???????????????????????????????????? 13分

18.(1) 證明:取CE中點M,則 FMDE

∵ ABDE       ∴ ABFM

∴ ABMF為平行四邊形

∴ AF∥BM

又AF平面BCE,BM平面BCE

∴ AF∥平面BCE??????????????????????????????????????????????????????????????????? 4分

(2) 解:過C作l∥AB,則l∥DE     ∴ 平面ABC平面CDE = l

∵ AB⊥平面ACD      ∴ l⊥平面ACD

∴ ∠ACD即為所求二面角的平面角,為60?????????????????????????????????? 8分

(3) 解:設(shè)B在平面AFE內(nèi)的射影為,作MN⊥FE于N,作CG⊥EF于G.

∴ BE與平面AFE所成角為

∵ AF⊥CD,AF⊥DE   ∴ AF⊥平面CDE    ∴ AF⊥MN ∴ MN⊥平面AEF

∵ BM∥平面AEF       ∴

由△CGF∽△EDF,得    ∴

    ∴

???????????????????????????????????????????????????????????????? 13分

19.解:(1) ?????????????????????????????????????????????????????????????????????????? 2分

       由

上單調(diào)遞減,在上單調(diào)遞增????????????????????????? 5分

(2) ?????????????????????????????????????????? 6分

上遞減     ∴ ??????????????? 9分

設(shè)    ∵    ∴上遞減

 即

???????????????????????????????????????????????????????????????????????? 12分

20.解:(1)  B(0,? b),A(,0),F(xiàn)(c,0),P(c,

      ∴ D為線段FP的中點,

∴ D為(c,)??????????????????????????????????????????????????????????????????? 2分

,∴ a = 2b,

?????????????????????????????????????????????? 5分

(2)  a = 2,則b = 1,B(0,?1)     雙曲線的方程為   ①

設(shè)M(x1,y1),N(x2,y2),C(0,m)

由已知???????????????????????????? 7分

設(shè)

整理得:

對滿足的k恒成立

故存在y軸上的點C(0,4),使為常數(shù)17.????????????????????? 12分

21.解:(1) ???????????????????????????????????????????????????????????????????????????? 1分

切線方程為與y = kx聯(lián)立得:

,令y = 0得:xB = 2t????????????????????????????????????????????????? 3分

??????????????????????????????????????????????????????? 4分

(2) 由??????????????????????????????????????????????????? 5分

兩邊取倒數(shù)得:      ∴

是以為首項,為公比的等比數(shù)列(時)

或是各項為0的常數(shù)列(k = 3時),此時an = 1

??????????????????????????????? 7分

當(dāng)k = 3時也符合上式

????????????????????????????????????????????????????????????????? 8分

(3) 作差得

其中

由于 1 < k < 3,∴

當(dāng)?????????????????????????????????????????????????? 12分

 

 


同步練習(xí)冊答案