題目列表(包括答案和解析)
某一批花生種子,如果每1粒發(fā)牙的概率為,那么播下4粒種子恰有2粒發(fā)芽的概率是
A. B. C. D.
某一批花生種子,如果每1粒發(fā)牙的概率為,那么播下4粒種子恰有2粒發(fā)芽的概率是
A. B. C. D.
某一批花生種子,如果每1粒發(fā)牙的概率為,那么播下4粒種子恰有2粒發(fā)芽的概率是( )
A. | B. | C. | D. |
某一批花生種子,如果每1粒發(fā)牙的概率為,那么播下4粒種子恰有2粒發(fā)芽的概率是
A.
B.
C.
D.
某一批花生種子,如果每1粒發(fā)牙的概率為,那么播下4粒種子恰有2粒發(fā)芽的概率是
A.
B.
C.
D.
一、選擇題:本大題考查基本概念和基本運(yùn)算.每小題5分,滿(mǎn)分60分.
1.B 2.A 3.C 4.B 5.B 6.D7.C 8.A 9.C 10.B
11.C 12.C
二、填空題:13、4 14. 15. 16.
三、解答題:
17. 解:f(x)=a(cosx+1+sinx)+b= (2分)
(1)當(dāng)a=1時(shí),f(x)= ,
當(dāng)時(shí),f(x)是增函數(shù),所以f(x)的單調(diào)遞增區(qū)間為 (6分)
(2)由得,∴
∴當(dāng)sin(x+)=1時(shí),f(x)取最小值3,即,
當(dāng)sin(x+)=時(shí),f(x)取最大值4,即b=4. (10分)
將b=4 代入上式得,故a+b= (12分)
18.解:設(shè)甲、乙兩條船到達(dá)的時(shí)刻分別為x,y.則
若甲先到,則乙必須晚1小時(shí)以上到達(dá),即
若乙先到達(dá),則甲必須晚2小時(shí)以上到達(dá),即
作圖,(略).利用面積比可算出概率為.
19.解 解法一(Ⅰ)如圖所示,連結(jié)BD,由ABCD是菱形且∠BCD=60°知,△BCD是
等邊三角形.因?yàn)镋是CD的中點(diǎn),所以BE⊥CD,又AB∥CD,所以BE⊥AB.又因?yàn)镻A⊥平面ABCD,平面ABCD,所以PA⊥BE.而AB=A,因此BE⊥平面PAB.
又平面PBE,所以平面PBE⊥平面PAB.
(Ⅱ)延長(zhǎng)AD、BE相交于點(diǎn)F,連結(jié)PF.過(guò)點(diǎn)A作AH⊥PB于H,由(Ⅰ)知平面PBE⊥平面PAB,所以AH⊥平面PBE.
在Rt△ABF中,因?yàn)椤螧AF=60°,所以,
AF=2AB=2=AP.
在等腰Rt△PAF中,取PF的中點(diǎn)G,連接AG.
則AG⊥PF.連結(jié)HG,由三垂線定理的逆定理得,
PF⊥HG.
所以∠AGH是平面PAD和平面PBE所成二面角的平面角(銳角).
在等腰Rt△PAF中,
在Rt△PAB中,
所以,在Rt△AHG中,
故平面PAD和平面PBE所成二面角(銳角)的大小是
解法二 如圖所示,以A為原點(diǎn),建立空間直角坐標(biāo)系.則相關(guān)各點(diǎn)的坐標(biāo)分別是A(0,0,0),B(1,0,0),P(0,0,2),
(Ⅰ)因?yàn)?sub>,平面PAB的一個(gè)法向量是,所以共線.從而B(niǎo)E⊥平面PAB.
又因?yàn)?sub>平面PBE,故平面PBE⊥平面PAB.
(Ⅱ)易知
設(shè)是平面PBE的一個(gè)法向量,則由得所以
設(shè)是平面PAD的一個(gè)法向量,則由得所以故可取
于是,
故平面PAD和平面PBE所成二面角(銳角)的大小是
20. 解法:
(I)
(Ⅰ)由
整理得
(Ⅱ)由
所以
故
由得
故
21. 解:設(shè):代入得 設(shè)P(),Q
整理, 此時(shí),
22.本小題主要考查函數(shù)的單調(diào)性、最值、不等式、數(shù)列等基本知識(shí),考查運(yùn)用導(dǎo)數(shù)研究函數(shù)性質(zhì)的方法,考查分析問(wèn)題和解決問(wèn)題的能力,滿(mǎn)分14分.
解法一:
(Ⅰ)因?yàn)?i>,所以函數(shù)定義域?yàn)椋?sub>,+),且.
由得,的單調(diào)遞增區(qū)間為(,0);
由得x>0,的單調(diào)遞增區(qū)間為(0,+).
(Ⅱ)因?yàn)?i>在[0,n]上是減函數(shù),所以,
則.
(?)
,
又,
因此,即實(shí)數(shù)c的取值范圍是.
(Ⅱ)由(Ⅰ)知.
因?yàn)?sub>
,
所以,
則
.
.
解法二:
(Ⅰ)同解法一.
(Ⅱ)因?yàn)閒(x)在上是減函數(shù),所以,
則.
(?)因?yàn)?sub>對(duì)恒成立.所以對(duì)恒成立.
則對(duì)恒成立.
設(shè),,則c<g(n)對(duì)恒成立.
考慮.
因?yàn)?sub>,
所以在內(nèi)是減函數(shù);則當(dāng)時(shí),g(n)隨n的增大而減小,
又因?yàn)?sub>=1.
所以對(duì)一切.因此,即實(shí)數(shù)的取值范圍是.
(?)由(?)知.
下面用數(shù)學(xué)歸納法證明不等式.
①當(dāng)n=1時(shí),左邊=,右邊=,左邊<右邊.不等式成立.
②假設(shè)當(dāng)n=k時(shí),不等式成立.即.
當(dāng)n=k+1時(shí),
,
即時(shí),不等式成立
綜合①,②得,不等式成立.
所以
即.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com