19.如圖所示.四棱錐的底面是邊長為1的菱形..E是CD的中點.PA底面ABCD.. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)

    如圖所示,四棱錐P-ABCD的底面ABCD是邊長為1的菱形,∠BCD=60°,

ECD的中點,PA⊥底面ABCD,PA=2.

   (Ⅰ)證明:平面PBE⊥平面PAB;

(Ⅱ)求平面PAD和平面PBE所成二面角(銳角)的大小.

查看答案和解析>>

(本小題滿分12分).如圖所示,四棱錐P-ABCD,底面ABCD是邊長為2的正方形,PA⊥面ABCD,PA=2,過點A作AE⊥PB,AF⊥PC,連接EF.
(1)求證:PC⊥面AEF.
(2)若面AEF交側(cè)棱PD于點G(圖中未標出點G),求多面體P—AEFG的體積。

查看答案和解析>>

(本小題滿分12分)

如圖所示,四棱錐P-ABCD的底面ABCD是邊長為1的菱形,BCD=60,E是CD的中點,PA底面ABCD,PA=2.

(1)證明:平面PBE平面PAB;

(2)求平面PAD和平面PBE所成二面角的正弦值。

 

查看答案和解析>>

(本小題滿分12分)

如圖所示,四棱錐P-ABCD的底面ABCD是邊長為1的菱形,BCD=60,E是CD的中點,PA底面ABCD,PA=2.

(1)證明:平面PBE平面PAB;

(2)求PC與平面PAB所成角的余弦值。

 

查看答案和解析>>

(本小題滿分12分)

如圖所示,四棱錐中,底面為正方形,平面,,,分別為、的中點.

(1)求證://平面

(2)求三棱錐的體積.

 

 

 

查看答案和解析>>

一、選擇題:本大題考查基本概念和基本運算.每小題5分,滿分60分.

 

1.A     2.C     3.C     4.B     5.C     6.D7.A             8.D        9.B        10.B

11.A  12.C

二、填空題:13、4    14.  15. 16.

 

三、解答題:

17.解:f(x)=a(cosx+1+sinx)+b=         (2分)

(1)當a=1時,f(x)= ,

時,f(x)是增函數(shù),所以f(x)的單調(diào)遞增區(qū)間為                          (6分)

(2)由,∴

∴當sin(x+)=1時,f(x)取最小值3,即,     

當sin(x+)=時,f(x)取最大值4,即b=4.               (10分)

將b=4 代入上式得,故a+b=                 (12分)

 

 

18.解:設(shè)甲、乙兩條船到達的時刻分別為x,y.則

若甲先到,則乙必須晚1小時以上到達,即

 

若乙先到達,則甲必須晚2小時以上到達,即

 

作圖,(略).利用面積比可算出概率為.

 

 

19.

解:(I)如圖所示, 連結(jié)是菱形且知,

是等邊三角形. 因為E是CD的中點,所以

所以

              又因為PA平面ABCD,平面ABCD,

所以因此 平面PAB.

平面PBE,所以平面PBE平面PAB.

(II)由(I)知,平面PAB, 平面PAB, 所以

所以是二面角的平面角.

中,

故二面角的大小為

 

20.解:

(1)

    .

    上是增函數(shù).

   (2)

   (i)

的單調(diào)遞增區(qū)間是

  

 

(ii)

    當的單調(diào)遞增區(qū)間是單調(diào)遞減區(qū)間是.   所以,的單調(diào)遞增區(qū)間是單調(diào)遞減區(qū)間是.

    由上知,當x=1時,fx)取得極大值f(1)=2

    又b>1,由2=b3-3b,解得b=2.

    所以,時取得最大值f(1)=2.

    當時取得最大值.

          1.  

             

             

             

            所以,函數(shù)上的最大值為

             

            21. 解:設(shè):代入  設(shè)P(),Q

             

            整理, 此時,

            22.解:(Ⅰ)經(jīng)計算,,,. ……………2分

            為奇數(shù)時,,即數(shù)列的奇數(shù)項成等差數(shù)列,

            ;                    ………………4分

            為偶數(shù),,即數(shù)列的偶數(shù)項成等比數(shù)列,

            .                     ……………………6分

            因此,數(shù)列的通項公式為.  ……… 7分

            (注:如遇考生用數(shù)學歸納法推證通項公式,可酌情給分)

            (Ⅱ),                      ………………8分

              ……(1)

            (2)

            (1)、(2)兩式相減,

                …………10分

               .                   ……………………12分

             

             

             

             

             


            同步練習冊答案