題目列表(包括答案和解析)
項目 | x1(cm) | A點速度(m/s) | x2(cm) | B點速度(m/s) | AB兩點間距離(cm) |
數(shù)據(jù) | 3.92 | 0.98 | 12.80 | 50.00 |
1 |
U |
1 |
R |
項目 | x1(cm) | A點速度(m/s) | x2(cm) | B點速度(m/s) | AB兩點間距離(cm) |
數(shù)據(jù) | 3.92 | 0.98 | 12.80 | 50.00 |
第九部分 穩(wěn)恒電流
第一講 基本知識介紹
第八部分《穩(wěn)恒電流》包括兩大塊:一是“恒定電流”,二是“物質(zhì)的導(dǎo)電性”。前者是對于電路的外部計算,后者則是深入微觀空間,去解釋電流的成因和比較不同種類的物質(zhì)導(dǎo)電的情形有什么區(qū)別。
應(yīng)該說,第一塊的知識和高考考綱對應(yīng)得比較好,深化的部分是對復(fù)雜電路的計算(引入了一些新的處理手段)。第二塊雖是全新的內(nèi)容,但近幾年的考試已經(jīng)很少涉及,以至于很多奧賽培訓(xùn)資料都把它刪掉了。鑒于在奧賽考綱中這部分內(nèi)容還保留著,我們還是想粗略地介紹一下。
一、歐姆定律
1、電阻定律
a、電阻定律 R = ρ
b、金屬的電阻率 ρ = ρ0(1 + αt)
2、歐姆定律
a、外電路歐姆定律 U = IR ,順著電流方向電勢降落
b、含源電路歐姆定律
在如圖8-1所示的含源電路中,從A點到B點,遵照原則:①遇電阻,順電流方向電勢降落(逆電流方向電勢升高)②遇電源,正極到負(fù)極電勢降落,負(fù)極到正極電勢升高(與電流方向無關(guān)),可以得到以下關(guān)系
UA ? IR ? ε ? Ir = UB
這就是含源電路歐姆定律。
c、閉合電路歐姆定律
在圖8-1中,若將A、B兩點短接,則電流方向只可能向左,含源電路歐姆定律成為
UA + IR ? ε + Ir = UB = UA
即 ε = IR + Ir ,或 I =
這就是閉合電路歐姆定律。值得注意的的是:①對于復(fù)雜電路,“干路電流I”不能做絕對的理解(任何要考察的一條路均可視為干路);②電源的概念也是相對的,它可以是多個電源的串、并聯(lián),也可以是電源和電阻組成的系統(tǒng);③外電阻R可以是多個電阻的串、并聯(lián)或混聯(lián),但不能包含電源。
二、復(fù)雜電路的計算
1、戴維南定理:一個由獨立源、線性電阻、線性受控源組成的二端網(wǎng)絡(luò),可以用一個電壓源和電阻串聯(lián)的二端網(wǎng)絡(luò)來等效。(事實上,也可等效為“電流源和電阻并聯(lián)的的二端網(wǎng)絡(luò)”——這就成了諾頓定理。)
應(yīng)用方法:其等效電路的電壓源的電動勢等于網(wǎng)絡(luò)的開路電壓,其串聯(lián)電阻等于從端鈕看進(jìn)去該網(wǎng)絡(luò)中所有獨立源為零值時的等效電阻。
2、基爾霍夫(克希科夫)定律
a、基爾霍夫第一定律:在任一時刻流入電路中某一分節(jié)點的電流強(qiáng)度的總和,等于從該點流出的電流強(qiáng)度的總和。
例如,在圖8-2中,針對節(jié)點P ,有
I2 + I3 = I1
基爾霍夫第一定律也被稱為“節(jié)點電流定律”,它是電荷受恒定律在電路中的具體體現(xiàn)。
對于基爾霍夫第一定律的理解,近來已經(jīng)拓展為:流入電路中某一“包容塊”的電流強(qiáng)度的總和,等于從該“包容塊”流出的電流強(qiáng)度的總和。
b、基爾霍夫第二定律:在電路中任取一閉合回路,并規(guī)定正的繞行方向,其中電動勢的代數(shù)和,等于各部分電阻(在交流電路中為阻抗)與電流強(qiáng)度乘積的代數(shù)和。
例如,在圖8-2中,針對閉合回路① ,有
ε3 ? ε2 = I3 ( r3 + R2 + r2 ) ? I2R2
基爾霍夫第二定律事實上是含源部分電路歐姆定律的變體(☆同學(xué)們可以列方程 UP = … = UP得到和上面完全相同的式子)。
3、Y?Δ變換
在難以看清串、并聯(lián)關(guān)系的電路中,進(jìn)行“Y型?Δ型”的相互轉(zhuǎn)換常常是必要的。在圖8-3所示的電路中
☆同學(xué)們可以證明Δ→ Y的結(jié)論…
Rc =
Rb =
Ra =
Y→Δ的變換稍稍復(fù)雜一些,但我們?nèi)匀豢梢缘玫?/p>
R1 =
R2 =
R3 =
三、電功和電功率
1、電源
使其他形式的能量轉(zhuǎn)變?yōu)殡娔艿难b置。如發(fā)電機(jī)、電池等。發(fā)電機(jī)是將機(jī)械能轉(zhuǎn)變?yōu)殡娔埽桓呻姵、蓄電池是將化學(xué)能轉(zhuǎn)變?yōu)殡娔埽还怆姵厥菍⒐饽苻D(zhuǎn)變?yōu)殡娔;原子電池是將原子核放射能轉(zhuǎn)變?yōu)殡娔埽辉陔娮釉O(shè)備中,有時也把變換電能形式的裝置,如整流器等,作為電源看待。
電源電動勢定義為電源的開路電壓,內(nèi)阻則定義為沒有電動勢時電路通過電源所遇到的電阻。據(jù)此不難推出相同電源串聯(lián)、并聯(lián),甚至不同電源串聯(lián)、并聯(lián)的時的電動勢和內(nèi)阻的值。
例如,電動勢、內(nèi)阻分別為ε1 、r1和ε2 、r2的電源并聯(lián),構(gòu)成的新電源的電動勢ε和內(nèi)阻r分別為(☆師生共同推導(dǎo)…)
ε =
r =
2、電功、電功率
電流通過電路時,電場力對電荷作的功叫做電功W。單位時間內(nèi)電場力所作的功叫做電功率P 。
計算時,只有W = UIt和P = UI是完全沒有條件的,對于不含源的純電阻,電功和焦耳熱重合,電功率則和熱功率重合,有W = I2Rt = t和P = I2R = 。
對非純電阻電路,電功和電熱的關(guān)系依據(jù)能量守恒定律求解。
四、物質(zhì)的導(dǎo)電性
在不同的物質(zhì)中,電荷定向移動形成電流的規(guī)律并不是完全相同的。
1、金屬中的電流
即通常所謂的不含源純電阻中的電流,規(guī)律遵從“外電路歐姆定律”。
2、液體導(dǎo)電
能夠?qū)щ姷囊后w叫電解液(不包括液態(tài)金屬)。電解液中離解出的正負(fù)離子導(dǎo)電是液體導(dǎo)電的特點(如:硫酸銅分子在通常情況下是電中性的,但它在溶液里受水分子的作用就會離解成銅離子Cu2+和硫酸根離子S,它們在電場力的作用下定向移動形成電流)。
在電解液中加電場時,在兩個電極上(或電極旁)同時產(chǎn)生化學(xué)反應(yīng)的過程叫作“電解”。電解的結(jié)果是在兩個極板上(或電極旁)生成新的物質(zhì)。
液體導(dǎo)電遵從法拉第電解定律——
法拉第電解第一定律:電解時在電極上析出或溶解的物質(zhì)的質(zhì)量和電流強(qiáng)度、跟通電時間成正比。表達(dá)式:m = kIt = KQ (式中Q為析出質(zhì)量為m的物質(zhì)所需要的電量;K為電化當(dāng)量,電化當(dāng)量的數(shù)值隨著被析出的物質(zhì)種類而不同,某種物質(zhì)的電化當(dāng)量在數(shù)值上等于通過1C電量時析出的該種物質(zhì)的質(zhì)量,其單位為kg/C。)
法拉第電解第二定律:物質(zhì)的電化當(dāng)量K和它的化學(xué)當(dāng)量成正比。某種物質(zhì)的化學(xué)當(dāng)量是該物質(zhì)的摩爾質(zhì)量M(克原子量)和它的化合價n的比值,即 K = ,而F為法拉第常數(shù),對任何物質(zhì)都相同,F(xiàn) = 9.65×104C/mol 。
將兩個定律聯(lián)立可得:m = Q 。
3、氣體導(dǎo)電
氣體導(dǎo)電是很不容易的,它的前提是氣體中必須出現(xiàn)可以定向移動的離子或電子。按照“載流子”出現(xiàn)方式的不同,可以把氣體放電分為兩大類——
a、被激放電
在地面放射性元素的輻照以及紫外線和宇宙射線等的作用下,會有少量氣體分子或原子被電離,或在有些燈管內(nèi),通電的燈絲也會發(fā)射電子,這些“載流子”均會在電場力作用下產(chǎn)生定向移動形成電流。這種情況下的電流一般比較微弱,且遵從歐姆定律。典型的被激放電情形有
b、自激放電
但是,當(dāng)電場足夠強(qiáng),電子動能足夠大,它們和中性氣體相碰撞時,可以使中性分子電離,即所謂碰撞電離。同時,在正離子向陰極運動時,由于以很大的速度撞到陰極上,還可能從陰極表面上打出電子來,這種現(xiàn)象稱為二次電子發(fā)射。碰撞電離和二次電子發(fā)射使氣體中在很短的時間內(nèi)出現(xiàn)了大量的電子和正離子,電流亦迅速增大。這種現(xiàn)象被稱為自激放電。自激放電不遵從歐姆定律。
常見的自激放電有四大類:輝光放電、弧光放電、火花放電、電暈放電。
4、超導(dǎo)現(xiàn)象
據(jù)金屬電阻率和溫度的關(guān)系,電阻率會隨著溫度的降低和降低。當(dāng)電阻率降為零時,稱為超導(dǎo)現(xiàn)象。電阻率為零時對應(yīng)的溫度稱為臨界溫度。超導(dǎo)現(xiàn)象首先是荷蘭物理學(xué)家昂尼斯發(fā)現(xiàn)的。
超導(dǎo)的應(yīng)用前景是顯而易見且相當(dāng)廣闊的。但由于一般金屬的臨界溫度一般都非常低,故產(chǎn)業(yè)化的價值不大,為了解決這個矛盾,科學(xué)家們致力于尋找或合成臨界溫度比較切合實際的材料就成了當(dāng)今前沿科技的一個熱門領(lǐng)域。當(dāng)前人們的研究主要是集中在合成材料方面,臨界溫度已經(jīng)超過100K,當(dāng)然,這個溫度距產(chǎn)業(yè)化的期望值還很遠(yuǎn)。
5、半導(dǎo)體
半導(dǎo)體的電阻率界于導(dǎo)體和絕緣體之間,且ρ
第八部分 靜電場
第一講 基本知識介紹
在奧賽考綱中,靜電學(xué)知識點數(shù)目不算多,總數(shù)和高考考綱基本相同,但在個別知識點上,奧賽的要求顯然更加深化了:如非勻強(qiáng)電場中電勢的計算、電容器的連接和靜電能計算、電介質(zhì)的極化等。在處理物理問題的方法上,對無限分割和疊加原理提出了更高的要求。
如果把靜電場的問題分為兩部分,那就是電場本身的問題、和對場中帶電體的研究,高考考綱比較注重第二部分中帶電粒子的運動問題,而奧賽考綱更注重第一部分和第二部分中的靜態(tài)問題。也就是說,奧賽關(guān)注的是電場中更本質(zhì)的內(nèi)容,關(guān)注的是縱向的深化和而非橫向的綜合。
一、電場強(qiáng)度
1、實驗定律
a、庫侖定律
內(nèi)容;
條件:⑴點電荷,⑵真空,⑶點電荷靜止或相對靜止。事實上,條件⑴和⑵均不能視為對庫侖定律的限制,因為疊加原理可以將點電荷之間的靜電力應(yīng)用到一般帶電體,非真空介質(zhì)可以通過介電常數(shù)將k進(jìn)行修正(如果介質(zhì)分布是均勻和“充分寬廣”的,一般認(rèn)為k′= k /εr)。只有條件⑶,它才是靜電學(xué)的基本前提和出發(fā)點(但這一點又是常常被忽視和被不恰當(dāng)?shù)亍熬C合應(yīng)用”的)。
b、電荷守恒定律
c、疊加原理
2、電場強(qiáng)度
a、電場強(qiáng)度的定義
電場的概念;試探電荷(檢驗電荷);定義意味著一種適用于任何電場的對電場的檢測手段;電場線是抽象而直觀地描述電場有效工具(電場線的基本屬性)。
b、不同電場中場強(qiáng)的計算
決定電場強(qiáng)弱的因素有兩個:場源(帶電量和帶電體的形狀)和空間位置。這可以從不同電場的場強(qiáng)決定式看出——
⑴點電荷:E = k
結(jié)合點電荷的場強(qiáng)和疊加原理,我們可以求出任何電場的場強(qiáng),如——
⑵均勻帶電環(huán),垂直環(huán)面軸線上的某點P:E = ,其中r和R的意義見圖7-1。
⑶均勻帶電球殼
內(nèi)部:E內(nèi) = 0
外部:E外 = k ,其中r指考察點到球心的距離
如果球殼是有厚度的的(內(nèi)徑R1 、外徑R2),在殼體中(R1<r<R2):
E = ,其中ρ為電荷體密度。這個式子的物理意義可以參照萬有引力定律當(dāng)中(條件部分)的“剝皮法則”理解〔即為圖7-2中虛線以內(nèi)部分的總電量…〕。
⑷無限長均勻帶電直線(電荷線密度為λ):E =
⑸無限大均勻帶電平面(電荷面密度為σ):E = 2πkσ
二、電勢
1、電勢:把一電荷從P點移到參考點P0時電場力所做的功W與該電荷電量q的比值,即
U =
參考點即電勢為零的點,通常取無窮遠(yuǎn)或大地為參考點。
和場強(qiáng)一樣,電勢是屬于場本身的物理量。W則為電荷的電勢能。
2、典型電場的電勢
a、點電荷
以無窮遠(yuǎn)為參考點,U = k
b、均勻帶電球殼
以無窮遠(yuǎn)為參考點,U外 = k ,U內(nèi) = k
3、電勢的疊加
由于電勢的是標(biāo)量,所以電勢的疊加服從代數(shù)加法。很顯然,有了點電荷電勢的表達(dá)式和疊加原理,我們可以求出任何電場的電勢分布。
4、電場力對電荷做功
WAB = q(UA - UB)= qUAB
三、靜電場中的導(dǎo)體
靜電感應(yīng)→靜電平衡(狹義和廣義)→靜電屏蔽
1、靜電平衡的特征可以總結(jié)為以下三層含義——
a、導(dǎo)體內(nèi)部的合場強(qiáng)為零;表面的合場強(qiáng)不為零且一般各處不等,表面的合場強(qiáng)方向總是垂直導(dǎo)體表面。
b、導(dǎo)體是等勢體,表面是等勢面。
c、導(dǎo)體內(nèi)部沒有凈電荷;孤立導(dǎo)體的凈電荷在表面的分布情況取決于導(dǎo)體表面的曲率。
2、靜電屏蔽
導(dǎo)體殼(網(wǎng)罩)不接地時,可以實現(xiàn)外部對內(nèi)部的屏蔽,但不能實現(xiàn)內(nèi)部對外部的屏蔽;導(dǎo)體殼(網(wǎng)罩)接地后,既可實現(xiàn)外部對內(nèi)部的屏蔽,也可實現(xiàn)內(nèi)部對外部的屏蔽。
四、電容
1、電容器
孤立導(dǎo)體電容器→一般電容器
2、電容
a、定義式 C =
b、決定式。決定電容器電容的因素是:導(dǎo)體的形狀和位置關(guān)系、絕緣介質(zhì)的種類,所以不同電容器有不同的電容
⑴平行板電容器 C = = ,其中ε為絕對介電常數(shù)(真空中ε0 = ,其它介質(zhì)中ε= ),εr則為相對介電常數(shù),εr = 。
⑵柱形電容器:C =
⑶球形電容器:C =
3、電容器的連接
a、串聯(lián) = +++ … +
b、并聯(lián) C = C1 + C2 + C3 + … + Cn
4、電容器的能量
用圖7-3表征電容器的充電過程,“搬運”電荷做功W就是圖中陰影的面積,這也就是電容器的儲能E ,所以
E = q0U0 = C =
電場的能量。電容器儲存的能量究竟是屬于電荷還是屬于電場?正確答案是后者,因此,我們可以將電容器的能量用場強(qiáng)E表示。
對平行板電容器 E總 = E2
認(rèn)為電場能均勻分布在電場中,則單位體積的電場儲能 w = E2 。而且,這以結(jié)論適用于非勻強(qiáng)電場。
五、電介質(zhì)的極化
1、電介質(zhì)的極化
a、電介質(zhì)分為兩類:無極分子和有極分子,前者是指在沒有外電場時每個分子的正、負(fù)電荷“重心”彼此重合(如氣態(tài)的H2 、O2 、N2和CO2),后者則反之(如氣態(tài)的H2O 、SO2和液態(tài)的水硝基笨)
b、電介質(zhì)的極化:當(dāng)介質(zhì)中存在外電場時,無極分子會變?yōu)橛袠O分子,有極分子會由原來的雜亂排列變成規(guī)則排列,如圖7-4所示。
2、束縛電荷、自由電荷、極化電荷與宏觀過剩電荷
a、束縛電荷與自由電荷:在圖7-4中,電介質(zhì)左右兩端分別顯現(xiàn)負(fù)電和正電,但這些電荷并不能自由移動,因此稱為束縛電荷,除了電介質(zhì),導(dǎo)體中的原子核和內(nèi)層電子也是束縛電荷;反之,能夠自由移動的電荷稱為自由電荷。事實上,導(dǎo)體中存在束縛電荷與自由電荷,絕緣體中也存在束縛電荷和自由電荷,只是它們的比例差異較大而已。
b、極化電荷是更嚴(yán)格意義上的束縛電荷,就是指圖7-4中電介質(zhì)兩端顯現(xiàn)的電荷。而宏觀過剩電荷是相對極化電荷來說的,它是指可以自由移動的凈電荷。宏觀過剩電荷與極化電荷的重要區(qū)別是:前者能夠用來沖放電,也能用儀表測量,但后者卻不能。
第二講 重要模型與專題
一、場強(qiáng)和電場力
【物理情形1】試證明:均勻帶電球殼內(nèi)部任意一點的場強(qiáng)均為零。
【模型分析】這是一個疊加原理應(yīng)用的基本事例。
如圖7-5所示,在球殼內(nèi)取一點P ,以P為頂點做兩個對頂?shù)、頂角很小的錐體,錐體與球面相交得到球面上的兩個面元ΔS1和ΔS2 ,設(shè)球面的電荷面密度為σ,則這兩個面元在P點激發(fā)的場強(qiáng)分別為
ΔE1 = k
ΔE2 = k
為了弄清ΔE1和ΔE2的大小關(guān)系,引進(jìn)錐體頂部的立體角ΔΩ ,顯然
= ΔΩ =
所以 ΔE1 = k ,ΔE2 = k ,即:ΔE1 = ΔE2 ,而它們的方向是相反的,故在P點激發(fā)的合場強(qiáng)為零。
同理,其它各個相對的面元ΔS3和ΔS4 、ΔS5和ΔS6 … 激發(fā)的合場強(qiáng)均為零。原命題得證。
【模型變換】半徑為R的均勻帶電球面,電荷的面密度為σ,試求球心處的電場強(qiáng)度。
【解析】如圖7-6所示,在球面上的P處取一極小的面元ΔS ,它在球心O點激發(fā)的場強(qiáng)大小為
ΔE = k ,方向由P指向O點。
無窮多個這樣的面元激發(fā)的場強(qiáng)大小和ΔS激發(fā)的完全相同,但方向各不相同,它們矢量合成的效果怎樣呢?這里我們要大膽地預(yù)見——由于由于在x方向、y方向上的對稱性,Σ = Σ = 0 ,最后的ΣE = ΣEz ,所以先求
ΔEz = ΔEcosθ= k ,而且ΔScosθ為面元在xoy平面的投影,設(shè)為ΔS′
所以 ΣEz = ΣΔS′
而 ΣΔS′= πR2
【答案】E = kπσ ,方向垂直邊界線所在的平面。
〖學(xué)員思考〗如果這個半球面在yoz平面的兩邊均勻帶有異種電荷,面密度仍為σ,那么,球心處的場強(qiáng)又是多少?
〖推薦解法〗將半球面看成4個球面,每個球面在x、y、z三個方向上分量均為 kπσ,能夠?qū)ΨQ抵消的將是y、z兩個方向上的分量,因此ΣE = ΣEx …
〖答案〗大小為kπσ,方向沿x軸方向(由帶正電的一方指向帶負(fù)電的一方)。
【物理情形2】有一個均勻的帶電球體,球心在O點,半徑為R ,電荷體密度為ρ ,球體內(nèi)有一個球形空腔,空腔球心在O′點,半徑為R′,= a ,如圖7-7所示,試求空腔中各點的場強(qiáng)。
【模型分析】這里涉及兩個知識的應(yīng)用:一是均勻帶電球體的場強(qiáng)定式(它也是來自疊加原理,這里具體用到的是球體內(nèi)部的結(jié)論,即“剝皮法則”),二是填補(bǔ)法。
將球體和空腔看成完整的帶正電的大球和帶負(fù)電(電荷體密度相等)的小球的集合,對于空腔中任意一點P ,設(shè) = r1 , = r2 ,則大球激發(fā)的場強(qiáng)為
E1 = k = kρπr1 ,方向由O指向P
“小球”激發(fā)的場強(qiáng)為
E2 = k = kρπr2 ,方向由P指向O′
E1和E2的矢量合成遵從平行四邊形法則,ΣE的方向如圖。又由于矢量三角形PE1ΣE和空間位置三角形OP O′是相似的,ΣE的大小和方向就不難確定了。
【答案】恒為kρπa ,方向均沿O → O′,空腔里的電場是勻強(qiáng)電場。
〖學(xué)員思考〗如果在模型2中的OO′連線上O′一側(cè)距離O為b(b>R)的地方放一個電量為q的點電荷,它受到的電場力將為多大?
〖解說〗上面解法的按部就班應(yīng)用…
〖答〗πkρq〔?〕。
二、電勢、電量與電場力的功
【物理情形1】如圖7-8所示,半徑為R的圓環(huán)均勻帶電,電荷線密度為λ,圓心在O點,過圓心跟環(huán)面垂直的軸線上有P點, = r ,以無窮遠(yuǎn)為參考點,試求P點的電勢UP 。
【模型分析】這是一個電勢標(biāo)量疊加的簡單模型。先在圓環(huán)上取一個元段ΔL ,它在P點形成的電勢
ΔU = k
環(huán)共有段,各段在P點形成的電勢相同,而且它們是標(biāo)量疊加。
【答案】UP =
〖思考〗如果上題中知道的是環(huán)的總電量Q ,則UP的結(jié)論為多少?如果這個總電量的分布不是均勻的,結(jié)論會改變嗎?
〖答〗UP = ;結(jié)論不會改變。
〖再思考〗將環(huán)換成半徑為R的薄球殼,總電量仍為Q ,試問:(1)當(dāng)電量均勻分布時,球心電勢為多少?球內(nèi)(包括表面)各點電勢為多少?(2)當(dāng)電量不均勻分布時,球心電勢為多少?球內(nèi)(包括表面)各點電勢為多少?
〖解說〗(1)球心電勢的求解從略;
球內(nèi)任一點的求解參看圖7-5
ΔU1 = k= k·= kσΔΩ
ΔU2 = kσΔΩ
它們代數(shù)疊加成 ΔU = ΔU1 + ΔU2 = kσΔΩ
而 r1 + r2 = 2Rcosα
所以 ΔU = 2RkσΔΩ
所有面元形成電勢的疊加 ΣU = 2RkσΣΔΩ
注意:一個完整球面的ΣΔΩ = 4π(單位:球面度sr),但作為對頂?shù)腻F角,ΣΔΩ只能是2π ,所以——
ΣU = 4πRkσ= k
(2)球心電勢的求解和〖思考〗相同;
球內(nèi)任一點的電勢求解可以從(1)問的求解過程得到結(jié)論的反證。
〖答〗(1)球心、球內(nèi)任一點的電勢均為k ;(2)球心電勢仍為k ,但其它各點的電勢將隨電量的分布情況的不同而不同(內(nèi)部不再是等勢體,球面不再是等勢面)。
【相關(guān)應(yīng)用】如圖7-9所示,球形導(dǎo)體空腔內(nèi)、外壁的半徑分別為R1和R2 ,帶有凈電量+q ,現(xiàn)在其內(nèi)部距球心為r的地方放一個電量為+Q的點電荷,試求球心處的電勢。
【解析】由于靜電感應(yīng),球殼的內(nèi)、外壁形成兩個帶電球殼。球心電勢是兩個球殼形成電勢、點電荷形成電勢的合效果。
根據(jù)靜電感應(yīng)的嘗試,內(nèi)壁的電荷量為-Q ,外壁的電荷量為+Q+q ,雖然內(nèi)壁的帶電是不均勻的,根據(jù)上面的結(jié)論,其在球心形成的電勢仍可以應(yīng)用定式,所以…
【答案】Uo = k - k + k 。
〖反饋練習(xí)〗如圖7-10所示,兩個極薄的同心導(dǎo)體球殼A和B,半徑分別為RA和RB ,現(xiàn)讓A殼接地,而在B殼的外部距球心d的地方放一個電量為+q的點電荷。試求:(1)A球殼的感應(yīng)電荷量;(2)外球殼的電勢。
〖解說〗這是一個更為復(fù)雜的靜電感應(yīng)情形,B殼將形成圖示的感應(yīng)電荷分布(但沒有凈電量),A殼的情形未畫出(有凈電量),它們的感應(yīng)電荷分布都是不均勻的。
此外,我們還要用到一個重要的常識:接地導(dǎo)體(A殼)的電勢為零。但值得注意的是,這里的“為零”是一個合效果,它是點電荷q 、A殼、B殼(帶同樣電荷時)單獨存在時在A中形成的的電勢的代數(shù)和,所以,當(dāng)我們以球心O點為對象,有
UO = k + k + k = 0
QB應(yīng)指B球殼上的凈電荷量,故 QB = 0
所以 QA = -q
☆學(xué)員討論:A殼的各處電勢均為零,我們的方程能不能針對A殼表面上的某點去列?(答:不能,非均勻帶電球殼的球心以外的點不能應(yīng)用定式。
基于剛才的討論,求B的電勢時也只能求B的球心的電勢(獨立的B殼是等勢體,球心電勢即為所求)——
UB = k + k
〖答〗(1)QA = -q ;(2)UB = k(1-) 。
【物理情形2】圖7-11中,三根實線表示三根首尾相連的等長絕緣細(xì)棒,每根棒上的電荷分布情況與絕緣棒都換成導(dǎo)體棒時完全相同。點A是Δabc的中心,點B則與A相對bc棒對稱,且已測得它們的電勢分別為UA和UB 。試問:若將ab棒取走,A、B兩點的電勢將變?yōu)槎嗌伲?/p>
【模型分析】由于細(xì)棒上的電荷分布既不均勻、三根細(xì)棒也沒有構(gòu)成環(huán)形,故前面的定式不能直接應(yīng)用。若用元段分割→疊加,也具有相當(dāng)?shù)睦щy。所以這里介紹另一種求電勢的方法。
每根細(xì)棒的電荷分布雖然復(fù)雜,但相對各自的中點必然是對稱的,而且三根棒的總電量、分布情況彼此必然相同。這就意味著:①三棒對A點的電勢貢獻(xiàn)都相同(可設(shè)為U1);②ab棒、ac棒對B點的電勢貢獻(xiàn)相同(可設(shè)為U2);③bc棒對A、B兩點的貢獻(xiàn)相同(為U1)。
所以,取走ab前 3U1 = UA
2U2 + U1 = UB
取走ab后,因三棒是絕緣體,電荷分布不變,故電勢貢獻(xiàn)不變,所以
UA′= 2U1
UB′= U1 + U2
【答案】UA′= UA ;UB′= UA + UB 。
〖模型變換〗正四面體盒子由彼此絕緣的四塊導(dǎo)體板構(gòu)成,各導(dǎo)體板帶電且電勢分別為U1 、U2 、U3和U4 ,則盒子中心點O的電勢U等于多少?
〖解說〗此處的四塊板子雖然位置相對O點具有對稱性,但電量各不相同,因此對O點的電勢貢獻(xiàn)也不相同,所以應(yīng)該想一點辦法——
我們用“填補(bǔ)法”將電量不對稱的情形加以改觀:先將每一塊導(dǎo)體板復(fù)制三塊,作成一個正四面體盒子,然后將這四個盒子位置重合地放置——構(gòu)成一個有四層壁的新盒子。在這個新盒子中,每個壁的電量將是完全相同的(為原來四塊板的電量之和)、電勢也完全相同(為U1 + U2 + U3 + U4),新盒子表面就構(gòu)成了一個等勢面、整個盒子也是一個等勢體,故新盒子的中心電勢為
U′= U1 + U2 + U3 + U4
最后回到原來的單層盒子,中心電勢必為 U = U′
〖答〗U = (U1 + U2 + U3 + U4)。
☆學(xué)員討論:剛才的這種解題思想是否適用于“物理情形2”?(答:不行,因為三角形各邊上電勢雖然相等,但中點的電勢和邊上的并不相等。)
〖反饋練習(xí)〗電荷q均勻分布在半球面ACB上,球面半徑為R ,CD為通過半球頂點C和球心O的軸線,如圖7-12所示。P、Q為CD軸線上相對O點對稱的兩點,已知P點的電勢為UP ,試求Q點的電勢UQ 。
〖解說〗這又是一個填補(bǔ)法的應(yīng)用。將半球面補(bǔ)成完整球面,并令右邊內(nèi)、外層均勻地帶上電量為q的電荷,如圖7-12所示。
從電量的角度看,右半球面可以看作不存在,故這時P、Q的電勢不會有任何改變。
而換一個角度看,P、Q的電勢可以看成是兩者的疊加:①帶電量為2q的完整球面;②帶電量為-q的半球面。
考查P點,UP = k + U半球面
其中 U半球面顯然和為填補(bǔ)時Q點的電勢大小相等、符號相反,即 U半球面= -UQ
以上的兩個關(guān)系已經(jīng)足以解題了。
〖答〗UQ = k - UP 。
【物理情形3】如圖7-13所示,A、B兩點相距2L ,圓弧是以B為圓心、L為半徑的半圓。A處放有電量為q的電荷,B處放有電量為-q的點電荷。試問:(1)將單位正電荷從O點沿移到D點,電場力對它做了多少功?(2)將單位負(fù)電荷從D點沿AB的延長線移到無窮遠(yuǎn)處去,電場力對它做多少功?
【模型分析】電勢疊加和關(guān)系WAB = q(UA - UB)= qUAB的基本應(yīng)用。
UO = k + k = 0
UD = k + k = -
U∞ = 0
再用功與電勢的關(guān)系即可。
【答案】(1);(2)。
【相關(guān)應(yīng)用】在不計重力空間,有A、B兩個帶電小球,電量分別為q1和q2 ,質(zhì)量分別為m1和m2 ,被固定在相距L的兩點。試問:(1)若解除A球的固定,它能獲得的最大動能是多少?(2)若同時解除兩球的固定,它們各自的獲得的最大動能是多少?(3)未解除固定時,這個系統(tǒng)的靜電勢能是多少?
【解說】第(1)問甚間;第(2)問在能量方面類比反沖裝置的能量計算,另啟用動量守恒關(guān)系;第(3)問是在前兩問基礎(chǔ)上得出的必然結(jié)論…(這里就回到了一個基本的觀念斧正:勢能是屬于場和場中物體的系統(tǒng),而非單純屬于場中物體——這在過去一直是被忽視的。在兩個點電荷的環(huán)境中,我們通常說“兩個點電荷的勢能”是多少。)
【答】(1)k;(2)Ek1 = k ,Ek2 = k;(3)k 。
〖思考〗設(shè)三個點電荷的電量分別為q1 、q2和q3 ,兩兩相距為r12 、r23和r31 ,則這個點電荷系統(tǒng)的靜電勢能是多少?
〖解〗略。
〖答〗k(++)。
〖反饋應(yīng)用〗如圖7-14所示,三個帶同種電荷的相同金屬小球,每個球的質(zhì)量均為m 、電量均為q ,用長度為L的三根絕緣輕繩連接著,系統(tǒng)放在光滑、絕緣的水平面上,F(xiàn)將其中的一根繩子剪斷,三個球?qū)㈤_始運動起來,試求中間這個小球的最大速度。
〖解〗設(shè)剪斷的是1、3之間的繩子,動力學(xué)分析易知,2球獲得最大動能時,1、2之間的繩子與2、3之間的繩子剛好應(yīng)該在一條直線上。而且由動量守恒知,三球不可能有沿繩子方向的速度。設(shè)2球的速度為v ,1球和3球的速度為v′,則
動量關(guān)系 mv + 2m v′= 0
能量關(guān)系 3k = 2 k + k + mv2 + 2m
解以上兩式即可的v值。
〖答〗v = q 。
三、電場中的導(dǎo)體和電介質(zhì)
【物理情形】兩塊平行放置的很大的金屬薄板A和B,面積都是S ,間距為d(d遠(yuǎn)小于金屬板的線度),已知A板帶凈電量+Q1 ,B板帶盡電量+Q2 ,且Q2<Q1 ,試求:(1)兩板內(nèi)外表面的電量分別是多少;(2)空間各處的場強(qiáng);(3)兩板間的電勢差。
【模型分析】由于靜電感應(yīng),A、B兩板的四個平面的電量將呈現(xiàn)一定規(guī)律的分布(金屬板雖然很薄,但內(nèi)部合場強(qiáng)為零的結(jié)論還是存在的);這里應(yīng)注意金屬板“很大”的前提條件,它事實上是指物理無窮大,因此,可以應(yīng)用無限大平板的場強(qiáng)定式。
為方便解題,做圖7-15,忽略邊緣效應(yīng),四個面的電荷分布應(yīng)是均勻的,設(shè)四個面的電荷面密度分別為σ1 、σ2 、σ3和σ4 ,顯然
(σ1 + σ2)S = Q1
(σ3 + σ4)S = Q2
A板內(nèi)部空間場強(qiáng)為零,有 2πk(σ1 ? σ2 ? σ3 ? σ4)= 0
A板內(nèi)部空間場強(qiáng)為零,有 2πk(σ1 + σ2 + σ3 ? σ4)= 0
解以上四式易得 σ1 = σ4 =
σ2 = ?σ3 =
有了四個面的電荷密度,Ⅰ、Ⅱ、Ⅲ空間的場強(qiáng)就好求了〔如EⅡ =2πk(σ1 + σ2 ? σ3 ? σ4)= 2πk〕。
最后,UAB = EⅡd
【答案】(1)A板外側(cè)電量、A板內(nèi)側(cè)電量,B板內(nèi)側(cè)電量?、B板外側(cè)電量;(2)A板外側(cè)空間場強(qiáng)2πk,方向垂直A板向外,A、B板之間空間場強(qiáng)2πk,方向由A垂直指向B,B板外側(cè)空間場強(qiáng)2πk,方向垂直B板向外;(3)A、B兩板的電勢差為2πkd,A板電勢高。
〖學(xué)員思考〗如果兩板帶等量異號的凈電荷,兩板的外側(cè)空間場強(qiáng)等于多少?(答:為零。)
〖學(xué)員討論〗(原模型中)作為一個電容器,它的“電量”是多少(答:)?如果在板間充滿相對介電常數(shù)為εr的電介質(zhì),是否會影響四個面的電荷分布(答:不會)?是否會影響三個空間的場強(qiáng)(答:只會影響Ⅱ空間的場強(qiáng))?
〖學(xué)員討論〗(原模型中)我們是否可以求出A、B兩板之間的靜電力?〔答:可以;以A為對象,外側(cè)受力·(方向相左),內(nèi)側(cè)受力·(方向向右),它們合成即可,結(jié)論為F = Q1Q2 ,排斥力!
【模型變換】如圖7-16所示,一平行板電容器,極板面積為S ,其上半部為真空,而下半部充滿相對介電常數(shù)為εr的均勻電介質(zhì),當(dāng)兩極板分別帶上+Q和?Q的電量后,試求:(1)板上自由電荷的分布;(2)兩板之間的場強(qiáng);(3)介質(zhì)表面的極化電荷。
【解說】電介質(zhì)的充入雖然不能改變內(nèi)表面的電量總數(shù),但由于改變了場強(qiáng),故對電荷的分布情況肯定有影響。設(shè)真空部分電量為Q1 ,介質(zhì)部分電量為Q2 ,顯然有
Q1 + Q2 = Q
兩板分別為等勢體,將電容器看成上下兩個電容器的并聯(lián),必有
U1 = U2 即 = ,即 =
解以上兩式即可得Q1和Q2 。
場強(qiáng)可以根據(jù)E = 關(guān)系求解,比較常規(guī)(上下部分的場強(qiáng)相等)。
上下部分的電量是不等的,但場強(qiáng)居然相等,這怎么解釋?從公式的角度看,E = 2πkσ(單面平板),當(dāng)k 、σ同時改變,可以保持E不變,但這是一種結(jié)論所展示的表象。從內(nèi)在的角度看,k的改變正是由于極化電荷的出現(xiàn)所致,也就是說,極化電荷的存在相當(dāng)于在真空中形成了一個新的電場,正是這個電場與自由電荷(在真空中)形成的電場疊加成為E2 ,所以
E2 = 4πk(σ ? σ′)= 4πk( ? )
請注意:①這里的σ′和Q′是指極化電荷的面密度和總量;② E = 4πkσ的關(guān)系是由兩個帶電面疊加的合效果。
【答案】(1)真空部分的電量為Q ,介質(zhì)部分的電量為Q ;(2)整個空間的場強(qiáng)均為 ;(3)Q 。
〖思考應(yīng)用〗一個帶電量為Q的金屬小球,周圍充滿相對介電常數(shù)為εr的均勻電介質(zhì),試求與與導(dǎo)體表面接觸的介質(zhì)表面的極化電荷量。
〖解〗略。
〖答〗Q′= Q 。
四、電容器的相關(guān)計算
【物理情形1】由許多個電容為C的電容器組成一個如圖7-17所示的多級網(wǎng)絡(luò),試問:(1)在最后一級的右邊并聯(lián)一個多大電容C′,可使整個網(wǎng)絡(luò)的A、B兩端電容也為C′?(2)不接C′,但無限地增加網(wǎng)絡(luò)的級數(shù),整個網(wǎng)絡(luò)A、B兩端的總電容是多少?
【模型分析】這是一個練習(xí)電容電路簡化基本事例。
第(1)問中,未給出具體級數(shù),一般結(jié)論應(yīng)適用特殊情形:令級數(shù)為1 ,于是
+ = 解C′即可。
第(2)問中,因為“無限”,所以“無限加一級后仍為無限”,不難得出方程
+ =
【答案】(1)C ;(2)C 。
【相關(guān)模型】在圖7-18所示的電路中,已知C1 = C2 = C3 = C9 = 1μF ,C4 = C5 = C6 = C7 = 2μF ,C8 = C10 = 3μF ,試求A、B之間的等效電容。
【解說】對于既非串聯(lián)也非并聯(lián)的電路,需要用到一種“Δ→Y型變換”,參見圖7-19,根據(jù)三個端點之間的電容等效,容易得出定式——
Δ→Y型:Ca =
Cb =
Cc =
Y→Δ型:C1 =
C2 =
C3 =
有了這樣的定式后,我們便可以進(jìn)行如圖7-20所示的四步電路簡化(為了方便,電容不宜引進(jìn)新的符號表達(dá),而是直接將變換后的量值標(biāo)示在圖中)——
【答】約2.23μF 。
【物理情形2】如圖7-21所示的電路中,三個電容器完全相同,電源電動勢ε1 = 3.0V ,ε2 = 4.5V,開關(guān)K1和K2接通前電容器均未帶電,試求K1和K2接通后三個電容器的電壓Uao 、Ubo和Uco各為多少。
【解說】這是一個考查電容器電路的基本習(xí)題,解題的關(guān)鍵是要抓與o相連的三塊極板(俗稱“孤島”)的總電量為零。
電量關(guān)系:++= 0
電勢關(guān)系:ε1 = Uao + Uob = Uao ? Ubo
ε2 = Ubo + Uoc = Ubo ? Uco
解以上三式即可。
【答】Uao = 3.5V ,Ubo = 0.5V ,Uco = ?4.0V 。
【伸展應(yīng)用】如圖7-22所示,由n個單元組成的電容器網(wǎng)絡(luò),每一個單元由三個電容器連接而成,其中有兩個的電容為3C ,另一個的電容為3C 。以a、b為網(wǎng)絡(luò)的輸入端,a′、b′為輸出端,今在a、b間加一個恒定電壓U ,而在a′b′間接一個電容為C的電容器,試求:(1)從第k單元輸入端算起,后面所有電容器儲存的總電能;(2)若把第一單元輸出端與后面斷開,再除去電源,并把它的輸入端短路,則這個單元的三個電容器儲存的總電能是多少?
【解說】這是一個結(jié)合網(wǎng)絡(luò)計算和“孤島現(xiàn)象”的典型事例。
(1)類似“物理情形1”的計算,可得 C總 = Ck = C
所以,從輸入端算起,第k單元后的電壓的經(jīng)驗公式為 Uk =
再算能量儲存就不難了。
(2)斷開前,可以算出第一單元的三個電容器、以及后面“系統(tǒng)”的電量分配如圖7-23中的左圖所示。這時,C1的右板和C2的左板(或C2的下板和C3的右板)形成“孤島”。此后,電容器的相互充電過程(C3類比為“電源”)滿足——
電量關(guān)系:Q1′= Q3′
Q2′+ Q3′=
電勢關(guān)系:+ =
從以上三式解得 Q1′= Q3′= ,Q2′= ,這樣系統(tǒng)的儲能就可以用得出了。
【答】(1)Ek = ;(2) 。
〖學(xué)員思考〗圖7-23展示的過程中,始末狀態(tài)的電容器儲能是否一樣?(答:不一樣;在相互充電的過程中,導(dǎo)線消耗的焦耳熱已不可忽略。)
☆第七部分完☆
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com